odpoveď:
Ťažisko trojuholníka je
vysvetlenie:
ťažisko trojuholníka, ktorého vrcholy sú
Preto centrid daného trojuholníka je
Podrobný dôkaz pre vzorec nájdete tu.
Tri tyče, každá s hmotnosťou M a dĺžkou L, sú spojené dohromady, aby vytvorili rovnostranný trojuholník. Aký je moment zotrvačnosti systému okolo osi prechádzajúcej cez jej ťažisko a kolmý na rovinu trojuholníka?
1/2 ML ^ 2 Moment zotrvačnosti jednej tyče okolo osi prechádzajúcej jej stredom a kolmo na ňu je 1/12 ML ^ 2 To na každej strane rovnostranného trojuholníka okolo osi prechádzajúcej stredom trojuholníka a kolmice do svojej roviny je 1 / 12ML ^ 2 + M (L / (2sqrt3)) ^ 2 = 1/6 ML ^ 2 (veta o rovnobežnej osi). Moment zotrvačnosti trojuholníka okolo tejto osi je potom 3 x 1/6 ML ^ 2 = 1/2 ML ^ 2
Aký je ťažisko trojuholníka s rohmi na (1, 4), (3, 5) a (5,3)?
Centroid je = (3,4) Nech ABC je trojuholník A = (x_1, y_1) = (1,4) B = (x_2, y_2) = (3,5) C = (x_3, y_3) = (5 , 3) ťažisko trojuholníka ABC je = ((x_1 + x_2 + x_3) / 3, (y_1 + y_2 + y_3) / 3) = ((1 + 3 + 5) / 3, (4 + 5 + 3) / 3) = (9 / 3,12 / 3) = (3,4)
Preukázať nasledujúce vyhlásenie. Nech ABC je akýkoľvek pravouhlý trojuholník, pravý uhol v bode C. Nadmorská výška nakreslená od C po preponku rozdeľuje trojuholník na dva pravé trojuholníky, ktoré sú si navzájom podobné a na pôvodný trojuholník?
Pozri nižšie. Podľa otázky, DeltaABC je pravouhlý trojuholník s / _C = 90 ^ @, a CD je nadmorská výška pre hypotézu AB. Dôkaz: Predpokladajme, že / _ABC = x ^ @. Takže uholBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Teraz, CD kolmá AB. Takže uholBDC = uholADC = 90 ^ @. V DeltaCBD, uholBCD = 180 ^ @ - uholBDC - uholCBD = 180 ^ @ 90 ^ - x ^ = (90 -x) ^ @ Podobne uholACD = x ^ @. Teraz, v DeltaBCD a DeltaACD, uhol CBD = uhol ACD a uhol BDC = uholADC. Takže podľa AA kritérií podobnosti, DeltaBCD ~ DeltaACD. Podobne môžeme nájsť DeltaBCD ~ = DeltaABC. Z toho, DeltaACD ~ = Delt