odpoveď:
2.86, 2.86 a 3.6
vysvetlenie:
Pomocou rovnice pre čiaru, aby sme našli dĺžku známej strany, ju potom použijeme ako svojvoľnú základňu trojuholníka s oblasťou na nájdenie druhého bodu.
Vzdialenosť medzi koncovými bodmi bodov môže byť vypočítaná z „vzorca vzdialenosti“ pre kartézske súradnicové systémy:
d =
d =
d =
Plocha trojuholníka = ½ b * h 4 = ½ * 3,6 * h; h = 2,22
Je to vzdialenosť od tretieho bodu od stredu ostatných bodov, kolmá na priamku medzi danými bodmi.
Pre rovnoramenný trojuholník musia mať dve strany rovnakú dĺžku, takže jedna je tretia strana. Každá polovica rovnoramenného trojuholníka má dve známe dĺžky 1,8 a 2,22 s požadovanou preponkou.
3.24 + 4.93 =
8.17 =
2,86 = H
Tri strany sú teda dlhé 2,86,2,86 a 3,6.
Dva rohy rovnoramenného trojuholníka sú na (1, 2) a (3, 1). Ak je plocha trojuholníka 12, aké sú dĺžky strán trojuholníka?
Meranie troch strán je (2.2361, 10.7906, 10.7906) Dĺžka a = sqrt ((3-1) ^ 2 + (1-2) ^ 2) = sqrt 5 = 2.2361 Plocha delta = 12:. h = (Plocha) / (a / 2) = 12 / (2,2361 / 2) = 12 / 1.1181 = 10.7325 strana b = sqrt ((a / 2) ^ 2 + h ^ 2) = sqrt ((1.1181) ^ 2 + (10.7325) ^ 2) b = 10.7906 Keďže trojuholník je rovnoramenný, tretia strana je tiež = b = 10.7906 Meranie troch strán je (2.2361, 10.7906, 10.7906)
Dva rohy rovnoramenného trojuholníka sú na (1, 2) a (1, 7). Ak je plocha trojuholníka 64, aké sú dĺžky strán trojuholníka?
"Dĺžka strán je" 25.722 na 3 desatinné miesta "Základná dĺžka je" 5 Všimnite si spôsob, akým som ukázal svoju prácu. Matematika je čiastočne o komunikácii! Nech Delta ABC reprezentuje tú v otázke Nech je dĺžka strán AC a BC s Nech je vertikálna výška h Nech je plocha a = 64 "jednotiek" ^ 2 Nech A -> (x, y) -> ( 1,2) Nech B -> (x, y) -> (1,7) '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ farba (modrá) ("Určenie dĺžky AB") farba (zelená) (AB "" = "" y_2-y_1 "" = "
Dva rohy rovnoramenného trojuholníka sú na (1, 2) a (3, 1). Ak je plocha trojuholníka 2, aké sú dĺžky strán trojuholníka?
Nájdite výšku trojuholníka a použite Pythagoras. Začnite tým, že si vzpomeniete vzorec pre výšku trojuholníka H = (2A) / B. Vieme, že A = 2, takže začiatok otázky možno odpovedať nájdením základne. Dané rohy môžu produkovať jednu stranu, ktorú nazývame základňa. Vzdialenosť medzi dvoma súradnicami v rovine XY je daná vzorcom sqrt ((X1-X2) ^ 2 + (Y1-Y2) ^ 2). PlugX1 = 1, X2 = 3, Y1 = 2 a Y2 = 1 na získanie sqrt ((- 2) ^ 2 + 1 ^ 2) alebo sqrt (5). Vzhľadom k tomu, že nemusíte zjednodušiť radikálov v práci, výška sa u