odpoveď:
Vyžadujú sa dva kroky:
- Vezmite krížový produkt dvoch vektorov.
- Normalizovať, že výsledný vektor, aby bol jednotkový vektor (dĺžka 1).
Jednotkový vektor je potom daný:
vysvetlenie:
- Krížový produkt poskytuje:
- Ak chcete normalizovať vektor, nájdite jeho dĺžku a každý koeficient rozdeľte o túto dĺžku.
Jednotkový vektor je potom daný:
Aký je jednotkový vektor, ktorý je ortogonálny k rovine obsahujúcej (i + j - k) a (i - j + k)?
Vieme, že ak vec C = vec A × vec B potom vec C je kolmá na vec vec A aj vec B Takže, čo potrebujeme, je nájsť krížový produkt daných dvoch vektorov. Takže, (hati + hatj-hatk) × (hati-hatj + hatk) = - hatk-hatj-hatk + hati-hatj-i = -2 (hatk + hatj) Vektor jednotky je (-2 (hatk + hatj + hatj)) hatj)) / (sqrt (2 ^ 2 + 2 ^ 2)) = - (hatk + hatj) / sqrt (2)
Aký je jednotkový vektor, ktorý je ortogonálny k rovine obsahujúcej <0, 4, 4> a <1, 1, 1>?
Odpoveď je = 〈0,1 / sqrt2, -1 / sqrt2〉 Vektor, ktorý je kolmý na 2 iné vektory, je daný krížovým produktom. 〈0,4,4〉 x 〈1,1,1〉 = | (hati, hatj, hatk), (0,4,4), (1,1,1) | = hati (0) -hatj (-4) + hatk (-4) = 〈0,4, -4〉 Overenie vykonaním bodových produktov 〈0,4,4〉. 〈0,4, -4〉 = 0 + 16-16 = 0 〈1,1,1〉. 〈0,4, -4〉 = 0 + 4-4 = 0 Modul 〈0,4, -4〉 je = 〈0,4, - 4〉 = sqrt (0 + 16 + 16) = sqrt32 = 4sqrt2 Jednotkový vektor sa získa delením vektora modulom = 1 / (4sqrt2) 〈0,4, -4〉 = 〈0,1 / sqrt2, -1 / sqrt2>
Aký je jednotkový vektor, ktorý je ortogonálny k rovine obsahujúcej (8i + 12j + 14k) a (2i + 3j - 7k)?
Vecu = <(-3sqrt (13)) / 13, (2sqrt (13)) / 13, 0> Vektor, ktorý je ortogonálny (kolmý, normálny) k rovine obsahujúcej dva vektory, je tiež ortogonálny k daným vektorom. Môžeme nájsť vektor, ktorý je ortogonálny k obom daným vektorom tým, že vezme ich krížový produkt. Potom môžeme nájsť jednotkový vektor v rovnakom smere ako tento vektor. Vzhľadom k tomu, veca = <8,12,14> a vecb = <2,3, -7>, vecaxxvecbis nájdené pre zložku i, máme (12 * -7) - (14 * 3) = - 84-42 = -126 Pre zložku j máme - [(8 * -7)