odpoveď:
Nezabudnite na stredný termín a na rovnice trig.
vysvetlenie:
Z toho dôvodu:
odpoveď:
Pozri vysvetlenie
vysvetlenie:
Vieme,
náhradka
Preukázalo sa teda
Ukážte, že cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Som trochu zmätený, ak urobím Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bude záporný ako cos (180 ° -theta) = - costheta v druhý kvadrant. Ako mám ísť na preukázanie otázky?
Pozri nižšie. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Ako dokázať (1 + sinx-cosx) / (1 + cosx + sinx) = tan (x / 2)?
Pozri nižšie. LHS = (1-cosx + sinx) / (1 + cosx + sinx) = (2sin ^ 2 (x / 2) + 2sin (x / 2) * cos (x / 2)) / (2cos ^ 2 (x / 2)) 2) + 2sin (x / 2) * cos (x / 2) = (2sin (x / 2) [sin (x / 2) + cos (x / 2)]) / (2cos (x / 2) * [ sin (x / 2) + cos (x / 2)]) = tan (x / 2) = RHS
Dokážte to: sqrt ((1-cosx) / (1 + cosx) + sqrt ((1 + cosx) / (1-cosx) = 2 / abs (sinx)?
Dôkaz nižšie s použitím konjugátov a trigonometrickej verzie Pytagorovej vety. Časť 1 sqrt ((1-cosx) / (1 + cosx)) farba (biela) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) farba (biela) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) farba (biela) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) Časť 2 Podobne sqrt ((1 + cosx) / (1-cosx) farba (biela) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) Časť 3: Kombinácia výrazov sqrt ( (1-cosx) / (1 + cosx) + sqrt ((1 + cosx) / (1-cosx) farba (biela) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) + (1