odpoveď:
Limit neexistuje. Pozri nižšie.
vysvetlenie:
Výsledok môžeme určiť čistou intuíciou.
My to vieme
To znamená, že limit neexistuje. Nevieme, či
'L sa mení spoločne ako druhá odmocnina b, a L = 72, keď a = 8 a b = 9. Nájdite L, keď a = 1/2 a b = 36? Y sa mení spoločne ako kocka x a druhá odmocnina w a Y = 128, keď x = 2 a w = 16. Nájdite Y, keď x = 1/2 a w = 64?
L = 9 "a" y = 4> "počiatočné vyhlásenie je" Lpropasqrtb "pre konverziu na rovnicu vynásobenú k konštantou" "variácie" rArrL = kasqrtb ", ak chcete nájsť k použiť zadané podmienky" L = 72 ", keď "a = 8" a "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" rovnica je "farba (červená) (bar (ul (| farba (biela) ( 2/2) farba (čierna) (L = 3asqrtb) farba (biela) (2/2) |)) "keď" a = 1/2 "a" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 farba (modrá) "----
Aký je limit (1+ (a / x) ako x sa blíži nekonečne?
Lim_ (x-> oo) (1 + a / x) = 1 lim_ (x-> oo) (1 + a / x) = 1+ lim_ (x-> oo) a / x Teraz, pre všetkých konečných a, lim_ (x-> oo) a / x = 0 Preto, lim_ (x-> oo) (1 + a / x) = 1
Ako zistíte limit xtanu (1 / (x-1)), keď x sa blíži nekonečne?
Limit je 1. Dúfajme, že niekto tu môže vyplniť prázdne miesta v mojej odpovedi. Jediný spôsob, ako to vyriešiť, je rozšíriť dotyčnicu pomocou série Laurent na x = oo. Bohužiaľ som ešte neurobil veľa komplexnej analýzy, takže vás nemôžem prejsť, ako presne sa to robí, ale pomocou Wolfram Alpha http://www.wolframalpha.com/input/?i=laurent+series+tan (1% 2F ( x-1)) Získal som, že tan (1 / (x-1)) expandovaný pri x = oo sa rovná: 1 / x + 1 / x ^ 2 + 4 / (3x ^ 3) + 2 / (x ^ 4) + 47 / (15x ^ 5) + O (((1) / (x)) ^ 6) Násobenie x dáva: 1 + 1 / x + 4 / (