Zobrazí sa graf h (x). Graf sa javí ako súvislý, kde sa mení definícia. Ukážte, že h je v skutočnosti kontinuálne tým, že nájde ľavú a pravú hranicu a preukáže, že definícia kontinuity je splnená?
Láskavo sa obráťte na Vysvetlenie. Aby sme ukázali, že h je spojitá, musíme skontrolovať jej kontinuitu pri x = 3. Vieme, že h bude kont. pri x = 3, ak a len ak, lim_ (x až 3-) h (x) = h (3) = lim_ (x až 3+) h (x) ............ ................... (AST). Ako x až 3-, x lt:. h (x) = - x ^ 2 + 4x + 1. :. lim_ (x až 3-) h (x) = lim_ (x až 3 -) - x ^ 2 + 4x + 1 = - (3) ^ 2 + 4 (3) +1, rArr lim_ (x až 3-) h (x) = 4 ............................................ .......... (ast ^ 1). Podobne lim_ (x až 3+) h (x) = lim_ (x až 3+) 4 (0,6) ^ (x-3) = 4 (0,6) ^ 0. rArr lim_ (x až 3+) h (x) = 4 ..................
Nemám naozaj pochopiť, ako to urobiť, môže niekto urobiť krok-za-krokom ?: Exponenciálny graf poklesu ukazuje očakávané odpisy pre novú loď, predaj za 3500, viac ako 10 rokov. - Napíšte exponenciálnu funkciu pre graf - Použite funkciu na vyhľadanie
F (x) = 3500e ^ (- (ln (3/7) x) / 3) f (x) = 3500e ^ (- 0,2824326201x) f (x) = 3500e ^ (- 0,28x) prvá otázka, pretože zvyšok bol odrezaný. Máme a = a_0e ^ (- bx) Na základe grafu sa zdá, že máme (3,1500) 1500 = 3500e ^ (- 3b) e ^ (- 3b) = 1500/3500 = 3/7 -3b = ln ( 3/7) b = -ln (3/7) /3=-0.2824326201 ~ ~ 0.28 f (x) = 3500e ^ (- (ln (3/7) x) / 3) f (x) = 3500e ^ (-0.2824326201x) f (x) = 3500e ^ (- 0,28x)
Nakreslite graf y = 8 ^ x udávajúci súradnice všetkých bodov, kde graf prechádza súradnicovými osami. Opíšte plne transformáciu, ktorá transformuje graf Y = 8 ^ x na graf y = 8 ^ (x + 1)?
Pozri nižšie. Exponenciálne funkcie bez vertikálnej transformácie nikdy neprekročia os x. Ako také, y = 8 ^ x nebude mať žiadne x-zachytenia. Bude mať y-priesečník na y (0) = 8 ^ 0 = 1. Graf by mal vyzerať nasledovne. graf {8 ^ x [-10, 10, -5, 5]} Graf y = 8 ^ (x + 1) je graf y = 8 ^ x posunutý o 1 jednotku doľava, takže je to y- zachytenie teraz leží na (0, 8). Tiež uvidíte, že y (-1) = 1. graf {8 ^ (x + 1) [-10, 10, -5, 5]} Dúfajme, že to pomôže!