odpoveď:
doména:
vysvetlenie:
Začnite riešením rovnice
# 4 - x ^ 2 = 0 #
potom
# (2 + x) (2 -x) = 0 #
#x = + - 2 #
Teraz vyberte testovací bod, nech je
Graf grafu
Dúfajme, že to pomôže!
odpoveď:
rozsah:
vysvetlenie:
Doména už bola určená
# Y = sqrt (4-x ^ 2) = (4-x ^ 2) ^ (1/2) #
# Dy / dx = 1/2 (4-x ^ 2) ^ (- 1/2) d / dx (4-x ^ 2) = 1/2 (4-x ^ 2) ^ (- 1/2) (-2x) = (- x) / sqrt (4-x ^ 2) #
Rozsah je teda
K tomuto záveru by sme tiež mohli dospieť s prihliadnutím na graf funkcie:
# Y ^ 2 = 4-x ^ 2 #
# X ^ 2 + y ^ 2 = 4 #
Ktorý je kruh v strede
Všimnite si, že riešenie pre
teda
Nech doména f (x) je [-2,3] a rozsah [0,6]. Čo je doména a rozsah f (-x)?
Doména je interval [-3, 2]. Rozsah je interval [0, 6]. Presne ako je to nie je funkcia, pretože jej doména je len číslo -2,3, zatiaľ čo jej rozsah je interval. Ale za predpokladu, že je to len preklep a skutočná doména je interval [-2, 3], je to takto: Nech g (x) = f (-x). Pretože f vyžaduje, aby jeho nezávislá premenná brala hodnoty len v intervale [-2, 3], -x (záporné x) musí byť v rozsahu [-3, 2], čo je doména g. Pretože g získava svoju hodnotu prostredníctvom funkcie f, jej rozsah zostáva rovnaký, bez ohľadu na to, čo používame ako nez
Čo je (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3) sqrt (5))?
2/7 Berieme, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5 + sqrt3) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt3) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (zrušiť (2sqrt15) -5 + 2 * 3zast. (-Sqrt15) - zrušiť (2sqrt15) -5 + 2 * 3 + zrušiť (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Všimnite si, že ak sú
Ak f (x) = 3x ^ 2 a g (x) = (x-9) / (x + 1) a x! = - 1, potom čo by f (g (x)) bolo rovnaké? g (f (x))? f ^ -1 (x)? Čo by bola doména, rozsah a nuly pre f (x)? Čo by bola doména, rozsah a nuly pre g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x v RR}, R_f = {f (x) v RR; f (x)> = 0} D_g = {x v RR; x! = - 1}, R_g = {g (x) v RR; g (x)! = 1}