Asymptota je hodnota funkcie, ktorej sa môžete veľmi priblížiť, ale nikdy ju nemôžete dosiahnuť.
Vezmime túto funkciu
graf {1 / x -10, 10, -5, 5}
Uvidíte, že čím väčšie vyrábame
ale nikdy to nebude
V tomto prípade zavoláme linku
Na druhej strane,
Takže linka
Čo sú asymptota (y) a diera (y), ak existujú, f (x) = (1-e ^ -x) / x?
Jediná asymptota je x = 0 Samozrejme, x nemôže byť 0, inak f (x) zostáva nedefinované. A tam je „diera“ v grafe.
Čo sú asymptota (y) a diera (y), ak existujú, f (x) = (1-x) ^ 2 / (x ^ 2-1)?
F (x) má horizontálnu asymptotu y = 1, vertikálnu asymptotu x = -1 a dieru v x = 1. > f (x) = (1-x) ^ 2 / (x ^ 2-1) = (x-1) ^ 2 / ((x-1) (x + 1)) = (x-1) / ( x + 1) = (x + 1-2) / (x + 1) = 1-2 / (x + 1) s vylúčením x! = 1 As x -> + - oo termín 2 / (x + 1) -> 0, takže f (x) má horizontálnu asymptotu y = 1. Ak x = -1, menovateľ f (x) je nula, ale čitateľ je nenulový. Takže f (x) má vertikálnu asymptotu x = -1. Keď x = 1, tak čitateľ aj menovateľ f (x) sú nula, takže f (x) je nedefinované a má otvor v x = 1. Všimnite si, že je definované lim_
Čo je racionálna funkcia, ktorá spĺňa nasledujúce vlastnosti: horizontálna asymptota na y = 3 a vertikálna asymptota x = -5?
F (x) = (3x) / (x + 5) graf {(3x) / (x + 5) [-23.33, 16.67, -5.12, 14.88]} Existuje určite mnoho spôsobov, ako napísať racionálnu funkciu, ktorá uspokojí podmienky uvedené vyššie, ale to bolo najjednoduchšie, na čo si môžem myslieť. Aby sme mohli určiť funkciu pre konkrétnu vodorovnú čiaru, musíme mať na pamäti nasledujúce skutočnosti. Ak je stupeň menovateľa väčší ako stupeň čitateľa, horizontálna asymptota je priamka y = 0. ex: f (x) = x / (x ^ 2 + 2) Ak je stupeň čitateľa väčší ako menovateľ, neexistuje žiadna horizontálna asymptot