odpoveď:
Pozrite si nižšie uvedený proces riešenia:
vysvetlenie:
Ak chcete najprv načrtnúť túto rovnicu, vyriešte dva body, ktoré riešia rovnicu a vyneste tieto body:
Prvý bod:
pre
Druhý bod:
pre
Môžeme ďalej grafovať dva body na súradnicovej rovine:
graf {(x ^ 2 + (y + 2) ^ 2-0,0125) ((x-2) ^ 2 + (y + 3) ^ 2-0,0125) = 0 -6, 6, -4, 2}
Teraz môžeme nakresliť priamku cez dva body, aby sme graf nakreslili:
graf {(y + 0,5x + 2) (x ^ 2 + (y + 2) ^ 2-0,0125) ((x-2) ^ 2 + (y + 3) ^ 2-0,0125) = 0 -6, 6, -4, 2}
Z grafu vidíme čiaru prechádzajúcu
(8, 1) a (6, 4) prechádza čiara. Druhou čiarou prechádza (3, 5). Aký je ďalší bod, ktorým môže prechádzať druhý riadok, ak je rovnobežný s prvým riadkom?
(1,7) Takže najprv musíme nájsť smerový vektor medzi (8,1) a (6,4) (6,4) - (8,1) = (- 2,3) Vieme, že vektorová rovnica je tvorený polohovým vektorom a smerovým vektorom. Vieme, že (3,5) je pozícia na vektorovej rovnici, takže ju môžeme použiť ako náš pozičný vektor a vieme, že je rovnobežná s druhou čiarou, takže môžeme použiť tento smerový vektor (x, y) = (3, 4) + s (-2,3) Ak chcete nájsť ďalší bod na riadku, nahraďte ľubovoľné číslo na s, okrem 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Ďalším bodom je tak (1,7).
Linka prechádza (4, 3) a (2, 5). Druhou čiarou prechádza (5, 6). Aký je ďalší bod, ktorým môže prechádzať druhý riadok, ak je rovnobežný s prvým riadkom?
(3,8) Takže najprv musíme nájsť smerový vektor medzi (2,5) a (4,3) (2,5) - (4,3) = (- 2,2) Vieme, že vektorová rovnica je tvorený polohovým vektorom a smerovým vektorom. Vieme, že (5,6) je pozícia na vektorovej rovnici, takže ju môžeme použiť ako náš pozičný vektor a vieme, že je rovnobežná s druhou čiarou, takže môžeme použiť tento smerový vektor (x, y) = (5, 6) + s (-2,2) Ak chcete nájsť iný bod na riadku, nahraďte ľubovoľné číslo v od seba od 0, takže si môžete vybrať 1 (x, y) = (5,6) +1 (-2,2) = (3,8) Takže (3,8) je ďalší
Nakreslite graf y = 8 ^ x udávajúci súradnice všetkých bodov, kde graf prechádza súradnicovými osami. Opíšte plne transformáciu, ktorá transformuje graf Y = 8 ^ x na graf y = 8 ^ (x + 1)?
Pozri nižšie. Exponenciálne funkcie bez vertikálnej transformácie nikdy neprekročia os x. Ako také, y = 8 ^ x nebude mať žiadne x-zachytenia. Bude mať y-priesečník na y (0) = 8 ^ 0 = 1. Graf by mal vyzerať nasledovne. graf {8 ^ x [-10, 10, -5, 5]} Graf y = 8 ^ (x + 1) je graf y = 8 ^ x posunutý o 1 jednotku doľava, takže je to y- zachytenie teraz leží na (0, 8). Tiež uvidíte, že y (-1) = 1. graf {8 ^ (x + 1) [-10, 10, -5, 5]} Dúfajme, že to pomôže!