odpoveď:
vysvetlenie:
#f (x) = tan (x) #
má vertikálne asymptoty pre všetky
Hodnota funkcie je nedefinovaná pri každej z týchto hodnôt
Okrem týchto asymptot
#RR "{x: x = pi / 2 + npi, nv ZZ} #
graf {tan x -10, 10, -5, 5}
Čo sú asymptota (y) a diera (y), ak existujú, f (x) = (1-e ^ -x) / x?
Jediná asymptota je x = 0 Samozrejme, x nemôže byť 0, inak f (x) zostáva nedefinované. A tam je „diera“ v grafe.
Čo sú asymptota (y) a diera (y), ak existujú, f (x) = (1-x) ^ 2 / (x ^ 2-1)?
F (x) má horizontálnu asymptotu y = 1, vertikálnu asymptotu x = -1 a dieru v x = 1. > f (x) = (1-x) ^ 2 / (x ^ 2-1) = (x-1) ^ 2 / ((x-1) (x + 1)) = (x-1) / ( x + 1) = (x + 1-2) / (x + 1) = 1-2 / (x + 1) s vylúčením x! = 1 As x -> + - oo termín 2 / (x + 1) -> 0, takže f (x) má horizontálnu asymptotu y = 1. Ak x = -1, menovateľ f (x) je nula, ale čitateľ je nenulový. Takže f (x) má vertikálnu asymptotu x = -1. Keď x = 1, tak čitateľ aj menovateľ f (x) sú nula, takže f (x) je nedefinované a má otvor v x = 1. Všimnite si, že je definované lim_
Čo sú asymptota (y) a diera (y), ak existujú, f (x) = tanx * cscx?
Nie sú žiadne diery a asymptota sú {(x = pi / 2 + 2kpi), (x = 3 / 2pi + 2kpi):} pre k v ZZ Potrebujeme tanx = sinx / cosx cscx = 1 / sinx Preto f (f) x) = tanx * cscx = sinx / cosx * 1 / sinx = 1 / cosx = secx Existujú asymptoty, keď cosx = 0 To je cosx = 0, => {(x = pi / 2 + 2kpi), (x = 3 / 2pi + 2kpi):} Kde k v ZZ Tam sú diery v bodoch, kde sinx = 0, ale sinx nestrihuje graf secx grafu ((y-secx) (y-sinx) = 0 [-10, 10, -5, 5]}