odpoveď:
vysvetlenie:
Vzhľadom na to:
Ak predpokladáme, že požadovaná parabola má zvislú os, potom je vrcholová forma akejkoľvek takejto paraboly
Preto musí mať naša požadovaná parabola formu vertexu
Ďalej vieme, že „dodatočný bod“
teda
Zapojením tejto hodnoty späť do našej vyššej verzie požadovanej paraboly sa dostaneme
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ak os symetrie nie je vertikálna:
1 ak je vertikálny, podobný proces možno použiť pri práci so všeobecnou formou
2 ak nie je ani vertikálny ani horizontálny, proces sa stáva viac zapojený (opýtajte sa ako samostatná otázka, ak je to tak, vo všeobecnosti budete potrebovať poznať uhol osi symetrie, aby ste vyvinuli odpoveď).
Aká je rovnica paraboly, ktorá má vrchol (0, 0) a prechádza bodom (-1, -64)?
F (x) = - 64x ^ 2 Ak je vrchol na (0 | 0), f (x) = ax ^ 2 Teraz sme len sub v bode (-1, -64) -64 = a * (- 1) ^ 2 = aa = -64 f (x) = - 64x ^ 2
Aká je rovnica paraboly, ktorá má vrchol (0, 0) a prechádza bodom (-1, -4)?
Y = -4x ^ 2> "rovnica paraboly v" farbe (modrá) "vertex forma" je. • farba (biela) (x) y = a (xh) ^ 2 + k "kde" (h, k) "sú súradnice vrcholu a a" "je násobiteľ" "tu" (h, k) = (0,0) "teda" y = ax ^ 2 "nájsť náhradu" (-1, -4) "do rovnice" -4 = ay = -4x ^ 2larrcolor (modrý) "rovnica parabola" graf { -4x ^ 2 [-10, 10, -5, 5]}
Aká je rovnica paraboly, ktorá má vrchol (0, 8) a prechádza bodom (5, -4)?
Existuje nekonečný počet parabolických rovníc, ktoré spĺňajú dané požiadavky. Ak obmedzíme parabolu na vertikálnu os symetrie, potom: farba (biela) ("XXX") y = -12 / 25x ^ 2 + 8 Pre parabolu so zvislou osou symetrie, všeobecná forma parabolickej rovnica s vrcholom v bode (a, b) je: farba (biela) ("XXX") y = m (xa) ^ 2 + b Nahradenie zadaných hodnôt vrcholov (0,8) pre (a, b) dáva farbu (biela ) ("XXX") y = m (x-0) ^ 2 + 8 a ak (5, -4) je riešením tejto rovnice, potom farba (biela) ("XXX") - 4 = m ((- 5) ^ 2-0) +8 rArr m