Aká je rovnica paraboly, ktorá má vrchol (6, 2) a prechádza bodom (3,20)?

Aká je rovnica paraboly, ktorá má vrchol (6, 2) a prechádza bodom (3,20)?
Anonim

odpoveď:

# Y = 2 (X-6) ^ 2 + 2 #

vysvetlenie:

Vzhľadom na to:

#COLOR (biely) ("XXX") #Vertex at # (Farba (červená) 6 farieb (modrá) 2) #a

#COLOR (biely) ("XXX") #Ďalší bod na #(3,20)#

Ak predpokladáme, že požadovaná parabola má zvislú os, potom je vrcholová forma akejkoľvek takejto paraboly

#COLOR (biely) ("XXX") y = farby (zelená) m (x-farba (červená) a) ^ 2 + farba (modrá) b # s vrcholom na # (Farba (červená) a, farba (modrá) b) #

Preto musí mať naša požadovaná parabola formu vertexu

#COLOR (biely) ("XXX") y = farby (zelená) m (x-farba (červená) 6) ^ 2 + farba (modrá) 2 #

Ďalej vieme, že „dodatočný bod“ # (X, y) = (farba (magenta) 3, farba (TEAL) 20) #

teda

#COLOR (biely) ("XXX") Farba (TEAL) 20 = farby (zelená) m (farba (magenta), 3-farba (červená) 6) ^ 2 + farba (modrá) 2 #

#color (biela) ("XXX") rArr 18 = 9 farieb (zelená) m #

#color (biela) ("XXX") rArr farba (zelená) m = 2 #

Zapojením tejto hodnoty späť do našej vyššej verzie požadovanej paraboly sa dostaneme

#COLOR (biely) ("XXX") y = farby (zelená) 2 (x-farba (červená) 6) ^ 2 + farba (modrá) 2 #

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ak os symetrie nie je vertikálna:

1 ak je vertikálny, podobný proces možno použiť pri práci so všeobecnou formou # X = m (y-b) ^ 2 + a #

2 ak nie je ani vertikálny ani horizontálny, proces sa stáva viac zapojený (opýtajte sa ako samostatná otázka, ak je to tak, vo všeobecnosti budete potrebovať poznať uhol osi symetrie, aby ste vyvinuli odpoveď).