odpoveď:
Sklon kolmej čiary:
vysvetlenie:
Pre dané body máme
Podľa definície je sklon priamky spájajúcej tieto body
Okrem toho, ak linka má sklon
Preto každá čiara kolmá na čiaru cez dané body
musí mať sklon
Rovnica priamky je 2x + 3y - 7 = 0, nájdi: - (1) sklon priamky (2) rovnicu priamky kolmej na danú čiaru a prechádzajúcej priesečníkom priamky x-y + 2 = 0 a 3x + y-10 = 0?
-3x + 2y-2 = 0 farba (biela) ("ddd") -> farba (biela) ("ddd") y = 3 / 2x + 1 Prvá časť v mnohých detailoch dokazujúcich, ako fungujú prvé princípy. Po použití na tieto a pomocou skratiek budete používať oveľa menej riadkov. farba (modrá) ("Určenie priesečníka počiatočných rovníc") x-y + 2 = 0 "" ....... Rovnica (1) 3x + y-10 = 0 "" .... Rovnica ( 2) Odčítanie x z oboch strán Eqn (1) dávaním -y + 2 = -x Vynásobenie oboch strán (-1) + y-2 = + x "" .......... Rovnica (1_a ) P
Aký je sklon akejkoľvek priamky kolmej na čiaru prechádzajúcu (5,0) a (-4, -3)?
Sklon priamky kolmej na čiaru prechádzajúcu cez (5,0) a (-4, -3) bude -3. Sklon kolmej čiary bude rovný zápornej inverzii sklonu pôvodnej čiary. Musíme začať hľadaním sklonu pôvodnej čiary. Nájdeme to tým, že vezmeme rozdiel v y vydelený rozdielom v x: m = (0 - (- 3)) / (5 - (- 4)) = (3) / 9 = 1/3 Teraz nájdeme sklon kolmej čiary, berieme len negatívnu inverziu 1/3: -1 / (1/3) = - 1 * 3/1 = -3 To znamená, že sklon priamky kolmej na pôvodnú je -3.
Aký je sklon akejkoľvek priamky kolmej na čiaru prechádzajúcu (0,6) a (18,4)?
Sklon akejkoľvek priamky kolmej na priamku prechádzajúcu cez body (0,6) a (18,4) je 9 Sklon priamky prechádzajúcej cez (0,6) a (18,4) je m_1 = (y_2-y_1) / (x_2-x_1) = (4-6) / (18-0) = (-2) / 18 = -1 / 9 Súčin sklonov kolmých čiar je m_1 * m_2 = -1: .m_2 = -1 / m_1 = -1 / (- 1/9) = 9. Preto sklon ktorejkoľvek čiary kolmej na čiaru prechádzajúcu (0,6) a (18,4) je 9 [Ans]