odpoveď:
vysvetlenie:
Rovnica danej čiary je
Ako súčin svahov dvoch čiar kolmých k sebe je
Čiara n prechádza bodmi (6,5) a (0, 1). Aká je y-priamka k, ak čiara k je kolmá na priamku n a prechádza bodom (2,4)?
7 je y-priamka priamky k Najprv nájdeme sklon pre čiaru n. (1-5) / (0-6) (-4) / - 6 2/3 = m Sklon priamky n je 2/3. To znamená, že sklon priamky k, ktorá je kolmá na priamku n, je záporná recipročná hodnota 2/3 alebo -3/2. Takže rovnica, ktorú máme doteraz je: y = (- 3/2) x + b Ak chcete vypočítať b alebo y-zachytenie, stačí zapojiť (2,4) do rovnice. 4 = (- 3/2) (2) + b 4 = -3 + b 7 = b Takže y-prechod je 7
Dokážte, že Euklidova pravá traingle Teorémy 1 a 2: ET_1 => priamka {BC} ^ {2} = priamka {AC} * priamka {CH}; ET'_1 => bar (AB) ^ {2} = bar (AC) * bar (AH); ET_2 => barAH ^ {2} = priamka {AH} * priamka {CH}? [zadajte zdroj obrázku tu] (https
Pozri Dôkaz v časti Vysvetlenie. Pozrime sa na to, že v Delta ABC a Delta BHC máme / _B = / _ BHC = 90 ^ @, "common" / _C = "common" / _BCH, a:., / _A = / _ HBC rArr Delta ABC "je podobný" Delta BHC V súlade s tým sú ich zodpovedajúce strany proporcionálne. :. (AC) / (BC) = (AB) / (BH) = (BC) / (CH), tj (AC) / (BC) = (BC) / (CH) rArr BC ^ 2 = AC * CH Toto je dokazuje ET_1. Dôkaz o ET'_1 je podobný. Aby sme dokázali ET_2, ukázali sme, že Delta AHB a Delta BHC sú podobné. V Delta AHB, / _AHB = 90 ^ @:. /_ABH+/_BAH=90^@....
Ako zistíte všetky body na krivke x ^ 2 + xy + y ^ 2 = 7, kde priamka dotyčnice je rovnobežná s osou x a bod, kde je priamka dotyčnice rovnobežná s osou y?
Čiara priamky je rovnobežná s osou x, keď je sklon (teda dy / dx) nula a je rovnobežný s osou y, keď sklon (opäť dy / dx) ide do polohy oo alebo -oo. dy / dx: x ^ 2 + xy + y ^ 2 = 7 d / dx (x ^ 2 + xy + y ^ 2) = d / dx (7) 2x + 1y + xdy / dx + 2y dy / dx = 0 dy / dx = - (2x + y) / (x + 2y) Teraz, dy / dx = 0, keď nuimerator je 0, za predpokladu, že to tiež neurobí menovateľ 0. 2x + y = 0 keď y = -2x Máme teraz dve rovnice: x ^ 2 + xy + y ^ 2 = 7 y = -2x Vyriešte (substitúciou) x ^ 2 + x (-2x) + (-2x) ^ 2 = 7 x ^ 2 -2x ^ 2 + 4x ^ 2 = 7 3x ^ 2 = 7 x = + - sqrt (7/3) = + - sqrt21 / 3 Pomocou y =