odpoveď:
Rovnica je
vysvetlenie:
Zameranie je
Directrix je preto
Akýkoľvek bod
graf {(y + 1/12 (x + 2) ^ 2-9) (y-12) = 0 -32,47, 32,45, -16,23, 16,25}
Druhým prípadom je
Zameranie je
Directrix je preto
graf {(y-1/12 (x + 2) ^ 2-6) (y-3) = 0 -32,47, 32,45, -16,23, 16,25}
Aká je rovnica paraboly so zameraním na (-2, 6) a vrcholom (-2, 9)?
Y = -x ^ 2/12-x / 3 + 26/3 Dané - Vertex (-2, 9) Focus (-2,6) Z informácií môžeme pochopiť, že parabola je v druhom kvadrante. Keďže fokus leží pod vrcholom, parabola smeruje dole. Vrchol je v (h, k). Potom je všeobecná forma vzorca - (x-h) ^ 2 = -4xxaxx (y-k) a je vzdialenosť medzi ohniskom a vrcholom. To je 3 Teraz nahradiť hodnoty (x - (- 2)) ^ 2 = -4xx3xx (y-9) (x + 2) ^ 2 = -12 (y-9) x ^ 2 + 4x + 4 = -12y +108 Transponovaním dostaneme - -12y + 108 = x ^ 2 + 4x + 4 -12y = x ^ 2 + 4x + 4-108 -12y = x ^ 2 + 4x-104 y = -x ^ 2 / 12- x / 3 + 26/3
Aká je rovnica paraboly s vrcholom na začiatku a zameraním na (0, -1/32)?
8x ^ 2 + y = 0 Vrchol je V (0, 0) a zaostrenie je S (0, -1/32). Vektor VS je v osi y v zápornom smere. Takže os paraboly je od začiatku a os y, v zápornom smere. Dĺžka VS = parameter veľkosti a = 1/32. Rovnica paraboly je teda x ^ 2 = -4ay = -1 / 8y. Usporiadanie, 8x ^ 2 + y = 0 ...
Aká je rovnica paraboly so zameraním (0,1 / 8) a vrcholom na začiatku?
Y = 2x ^ 2 Pozorujte, že vrchol, (0,0) a zaostrenie (0,1 / 8) sú oddelené vertikálnou vzdialenosťou 1/8 v kladnom smere; to znamená, že parabola sa otvára smerom nahor. Vrcholová forma rovnice pre parabolu, ktorá sa otvára smerom nahor, je: y = a (x-h) ^ 2 + k "[1]" kde (h, k) je vrchol. Nahraďte vrchol, (0,0), do rovnice [1]: y = a (x-0) ^ 2 + 0 Zjednodušte: y = ax ^ 2 "[1.1]" Charakteristikou koeficientu a je: a = 1 / (4f) "[2]" kde f je podpísaná vzdialenosť od vrcholu k fokusu. Nahraďte f = 1/8 do rovnice [2]: a = 1 / (4 (1/8) a = 2 "[