odpoveď:
vysvetlenie:
Menovateľ f (x) nemôže byť nula, pretože by to spôsobilo, že f (x) bude nedefinované. Vyrovnanie menovateľa na nulu a riešenie dáva hodnoty, ktoré x nemôže byť a ak je čitateľ pre tieto hodnoty nenulový, potom sú to vertikálne asymptoty.
vyriešiť:
# 9x ^ 2-16 = 0rArrx ^ 2 = 16 / 9rArrx = + - 4/3 #
# rArrx = -4 / 3 "a" x = 4/3 "sú asymptoty" # Horizontálne asymptoty sa vyskytujú ako
#lim_ (xto + -oo), f (x) toc "(konštanta)" # deliť termíny na čitateľa / menovateľa najvyššou silou x, to znamená
# X ^ 2 #
# F (x) = ((7x ^ 2) / x ^ 2) / ((9x ^ 2) / x ^ 2-16 / x ^ 2) = 7 / (9-16 / x ^ 2) # ako
# XTO + -OO, f (x) až 7 / (9-0) #
# rArry = 7/9 "je asymptota" # graf {(7x ^ 2) / (9x ^ 2-16) -10, 10, -5, 5}
odpoveď:
Vertikálne asymptoty sú
Horizontálna asymptota je
vysvetlenie:
Menovateľ
X
Doména domény
Ako sa nemôžeme rozdeliť
Vertikálne asymptoty sú
Na zistenie horizontálnych limitov vypočítame limity
V čitateľovi a menovateľovi berieme najvyšší stupeň.
X
Horizontálna asymptota je
graf {7x ^ 2 / (9x ^ 2-16) -10, 10, -5, 5}
Na určenie, či je nejaká funkcia funkciou, používame vertikálnu čiarovú skúšku, tak prečo používame horizontálnu čiarovú skúšku pre inverznú funkciu, ktorá je v protiklade s testom vertikálnej čiary?
Na určenie, či inverzná funkcia je skutočne funkciou, použijeme len test horizontálnej čiary. Tu je dôvod, prečo: Po prvé, musíte sa pýtať sami seba, čo je inverzná funkcia, je to tam, kde x a y sú prepnuté, alebo funkcia, ktorá je symetrická k pôvodnej funkcii cez čiaru, y = x. Takže áno, použijeme vertikálny riadkový test na zistenie, či je niečo funkciou. Čo je to vertikálna čiara? Je to rovnica x = niektoré číslo, všetky čiary, kde x je rovné určitej konštante, sú zvislé čiary. Preto, definíciou inverznej funkc
Aké sú vertikálne a horizontálne asymptoty pre nasledujúcu racionálnu funkciu: r (x) = (x-2) / (x ^ 2-8x-65)?
Vertikálne asymptoty x = -5, x = 13 horizontálne asymptoty y = 0> Menovateľ r (x) nemôže byť nulový, pretože by bol nedefinovaný.Vyrovnanie menovateľa na nulu a riešenie dáva hodnoty, ktoré x nemôže byť a ak je čitateľ pre tieto hodnoty nenulový, potom sú to vertikálne asymptoty. vyriešiť: x ^ 2-8x-65 = 0rArr (x-13) (x + 5) = 0 rArrx = -5, x = 13 "sú asymptoty" Horizontálne asymptoty sa vyskytujú ako lim_ (xto + -oo), r (x ) toc "(konštanta)" delí termíny na čitateľovi / menovateľovi najvyšším výkonom x, tj x ^
Aké sú vertikálne a horizontálne asymptoty f (x) = 5 / ((x + 1) (x-3))?
"vertikálne asymptoty pri" x = -1 "a" x = 3 "horizontálnom asymptote na" y = 0> "menovateľ f (x) nemôže byť nula, pretože" "by f (x) nedefinoval. "" na nulu a riešenie dáva hodnoty, ktoré x nemôže byť "" a ak je čitateľ pre tieto hodnoty nenulový, potom "" sú vertikálne asymptoty "" vyriešiť "(x + 1) (x-3) = 0 rArrx = -1 "a" x = 3 "sú asymptoty" "Horizontálne asymptoty sa vyskytujú ako" lim_ (xto + -oo), f (x) toc "(konštanta)" "