odpoveď:
Podkrovie je
vysvetlenie:
Takže celková výška domu je v prvom poschodí plus druhé poschodie plus podkrovie
kde
SOLVE
spoločný menovateľ
na skontrolujte našu prácu,
spoločný menovateľ
Áno, mali sme pravdu. Takže podkrovie je
Prvý a druhý termín geometrickej postupnosti sú vždy prvý a tretí termín lineárnej sekvencie. Štvrtý termín lineárnej sekvencie je 10 a súčet jej prvých piatich výrazov je 60 Nájdite prvých päť výrazov lineárnej sekvencie?
{16, 14, 12, 10, 8} Typická geometrická sekvencia môže byť reprezentovaná ako c0a, c0a ^ 2, cdots, c_0a ^ k a typická aritmetická sekvencia ako c0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Volanie c_0 a ako prvý prvok pre geometrickú sekvenciu máme {(c_0 a ^ 2 = c_0a + 2Delta -> "Prvá a druhá z GS sú prvá a tretia z LS"), (c_0a + 3Delta = 10- > "Štvrtý termín lineárnej sekvencie je 10"), (5c_0a + 10Delta = 60 -> "Súčet prvých piatich výrazov je 60"):} Riešenie pre c_0, a, Delta dos
Produkt dvoch po sebe idúcich celých čísel je 24. Nájdite dve celé čísla. Odpoveď vo forme párových bodov s najnižšou z dvoch celých čísel ako prvý. Odpoveď?
Dve po sebe idúce celé čísla: (4,6) alebo (-6, -4) Nech, farba (červená) (n a n-2 sú dve po sebe idúce celé čísla, kde farba (červená) (n inZZ Produkt n a n-2 je 24, tj n (n-2) = 24 => n ^ 2-2n-24 = 0 Teraz, [(-6) + 4 = -2 a (-6) xx4 = -24]: .n 2-6n + 4n-24 = 0: n (n-6) +4 (n-6) = 0: (n-6) (n + 4) = 0: n-6 = 0 alebo n + 4 = 0 ... až [n inZZ] => farba (červená) (n = 6 alebo n = -4 (i) farba (červená) (n = 6) => farba (červená) (n-2) = 6-2 = farba (červená) (4) Takže dve po sebe idúce celé čísla: (4,6) (ii)) farba (červená) (n = -4)
Produkt dvoch po sebe idúcich nepárnych celých čísel je 29 menej ako 8 násobok ich súčtu. Nájdite dve celé čísla. Odpoveď vo forme párových bodov s najnižšou z dvoch celých čísel ako prvý?
(13, 15) alebo (1, 3) Nech x a x + 2 sú nepárne po sebe idúce čísla, potom podľa otázky máme (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 alebo 1 Teraz, PRÍPAD I: x = 13:. x + 2 = 13 + 2 = 15:. Čísla sú (13, 15). PRÍPAD II: x = 1:. x + 2 = 1+ 2 = 3:. Čísla sú (1, 3). Preto, ako sa tu tvoria dva prípady; dvojica čísel môže byť (13, 15) alebo (1, 3).