Vyriešte nasledujúcu rovnicu x ^ 8-10x ^ 4 + 9 = 0?

Vyriešte nasledujúcu rovnicu x ^ 8-10x ^ 4 + 9 = 0?
Anonim

odpoveď:

#x = + -1, + -i, + -sqrt (3), + -sqrt (3) i #

vysvetlenie:

Vzhľadom na to:

# X ^ 8-10x ^ 4 + 9 = 0 #

Všimnite si, že toto je v skutočnosti kvadratické # X ^ 4 # ako:

# (x ^ 4) ^ 2-10 (x ^ 4) +9 = 0 #

Môžeme to ovplyvniť, aby sme našli:

# 0 = (x ^ 4) ^ 2-10 (x ^ 4) +9 = (x ^ 4-1) (x ^ 4-9) #

Každý zo zostávajúcich kvartických faktorov je rozdiel štvorcov, takže môžeme použiť:

# A ^ 2-B ^ 2 = (A-B) (A + B) #

nájsť:

# x ^ 4-1 = (x ^ 2) ^ 2-1 ^ 2 = (x ^ 2-1) (x ^ 2 + 1) #

# x ^ 4-9 = (x ^ 2) ^ 2 - 3 ^ 2 = (x ^ 2-3) (x ^ 2 + 3) #

Zvyšné kvadratické faktory budú tiež faktorom ako rozdiely štvorcov, ale na to, aby sme niektoré z nich použili, musíme použiť iracionálne a / alebo komplexné koeficienty.

# x ^ 2-1 = x ^ 2-1 ^ 2 = (x-1) (x + 1) #

# x ^ 2 + 1 = x ^ 2-i ^ 2 = (x-i) (x + i) #

# x ^ 2-3 = x ^ 2- (sqrt (3)) ^ 2 = (x-sqrt (3)) (x + sqrt (3)) #

# x ^ 2 + 3 = x ^ 2- (sqrt (3) i) ^ 2 = (x-sqrt (3) i) (x + sqrt (3) i) #

Preto nuly pôvodného oktického polynómu sú:

#x = + -1, + -i, + -sqrt (3), + -sqrt (3) i #