odpoveď:
5 jednotiek. Toto je veľmi slávny trojuholník.
vysvetlenie:
ak
Vzhľadom k tomu, že dĺžky strán sú pozitívne:
Dajte dovnútra
Skutočnosť, že trojuholník so stranami 3, 4 a 5 jednotiek je pravouhlý trojuholník, je známa už v dávnych Egyptoch. To je Egyptský trojuholník, veril byť použitý starými Egypťanmi stavať pravé uhly - napríklad v pyramídach (http://nrich.maths.org/982).
Nohy pravouhlého trojuholníka majú dĺžku x + 4 a x + 7. Dĺžka prepony je 3x. Ako zistíte obvod trojuholníka?
Obvod je rovný súčtu strán, takže obvod je: (x + 4) + (x + 7) + 3x = 5x + 11 Avšak môžeme použiť Pytagorovu vetu na určenie hodnoty x, pretože toto je pravouhlý trojuholník. a ^ 2 + b ^ 2 + c ^ 2 kde a, b sú nohy a c je prepona. Zapojte známe hodnoty. (x + 4) ^ 2 + (x + 7) ^ 2 = (3x) ^ 2 Rozdeliť a vyriešiť. x ^ 2 + 8x + 16 + x ^ 2 + 14x + 49 = 9x ^ 2 2x ^ 2 + 22x + 65 = 9x ^ 2 0 = 7x ^ 2-22x-65 Faktor kvadratický (alebo použite kvadratický vzorec). 0 = 7x ^ 2-35x + 13x-65 0 = 7x (x-5) +13 (x-5) 0 = (7x + 13) (x-5) x = -13 / 7,5 iba x = 5 platí tu, pretože dĺžka prepon
Dĺžka prepony v pravom trojuholníku je 20 centimetrov. Ak je dĺžka jednej nohy 16 centimetrov, aká je dĺžka druhej nohy?
"12 cm" Od "Pythagorova veta" "h" ^ 2 = "a" ^ 2 + "b" ^ 2 kde "h =" Dĺžka strany prepony "a =" Dĺžka jednej nohy "b =" Dĺžka inej nohy noha ("20 cm") ^ 2 = ("16 cm") ^ 2 + "b" ^ 2 "b" ^ 2 = ("20 cm") ^ 2 - ("16 cm") ^ 2 "b" = sqrt (("20 cm") ^ 2 - ("16 cm") ^ 2) "b" = sqrt ("400 cm" ^ 2 - "256 cm" ^ 2) "b" = sqrt ("144 cm" "^ 2)" b = 12 cm "
Dve rovnoramenné trojuholníky majú rovnakú základnú dĺžku. Nohy jedného z trojuholníkov sú dvakrát tak dlhé ako nohy druhého. Ako zistíte dĺžky strán trojuholníkov, ak ich obvody sú 23 cm a 41 cm?
Každý krok je tak trochu dlhý. Preskočiť bity, ktoré poznáte. Základňa je 5 pre obe Menšie nohy sú 9 pre každého Dlhšie nohy sú 18 kusov Niekedy rýchly náčrt pomáha pri striekaní čo robiť Pre trojuholník 1 -> a + 2b = 23 "" ........... .... Rovnica (1) Pre trojuholník 2 -> a + 4b = 41 "" ............... Rovnica (2) ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~pobj farba (modrá) ("Určiť hodnotu" b) Pre rovnicu (1) odčítať 2b z oboch strán dávať : a = 23-2b "" ......................... Rovnic