odpoveď:
vysvetlenie:
z
# "h" ^ 2 = "a" ^ 2 + "b" ^ 2 #
kde
# "h =" # Dĺžka strany prepony# "a =" # Dĺžka jednej nohy# "b =" # Dĺžka ďalšej nohy
Prepona pravého trojuholníka je 39 palcov a dĺžka jednej nohy je 6 palcov dlhšia ako dvojnásobok druhej nohy. Ako zistíte dĺžku každej nohy?
Nohy majú dĺžku 15 a 36 Metóda 1 - Známe trojuholníky Prvých pár pravouhlých trojuholníkov s nepárnou dĺžkou sú: 3, 4, 5, 5, 12, 13 7, 24, 25 Všimnite si, že 39 = 3 * 13, takže bude trojuholník s nasledujúcimi stranami pracovať: 15, 36, 39 tj 3 krát väčší ako trojuholník 5, 12, 13? Dvakrát 15 je 30, plus 6 je 36 - Áno. farba (biela) () Metóda 2 - Pythagorasov vzorec a malá algebra Ak je menšia noha dlhá x, potom väčšia noha má dĺžku 2x + 6 a prepona je: 39 = sqrt (x ^ 2 + (2x + 6) ^ 2) farba (biela) (39) = sqr
Obvod trojuholníka je 29 mm. Dĺžka prvej strany je dvojnásobkom dĺžky druhej strany. Dĺžka tretej strany je o 5 viac ako dĺžka druhej strany. Ako zistíte dĺžku trojuholníka?
S_1 = 12 s_2 = 6 s_3 = 11 Obvod trojuholníka je súčtom dĺžok všetkých jeho strán. V tomto prípade sa uvádza, že obvod je 29 mm. Takže pre tento prípad: s_1 + s_2 + s_3 = 29 Takže riešenie dĺžky strán prekladáme výrazy v zadanom formulári do rovnice. "Dĺžka prvej strany je dvojnásobkom dĺžky druhej strany" Aby sme to vyriešili, priradíme náhodnú premennú buď s_1 alebo s_2. Pre tento príklad by som nechal x byť dĺžkou druhej strany, aby som sa vyhol zlomkom v mojej rovnici. takže vieme, že: s_1 = 2s_2 ale keďže sme nechali s_2 byť
Jedna noha pravouhlého trojuholníka je 3,2 cm dlhá. Dĺžka druhej nohy je 5,7 cm. Aká je dĺžka prepony?
Pravý trojuholník má dĺžku 6,54 cm. Nech je prvá noha righrového trojuholníka l_1 = 3,2 cm. Druhá vetva righr trojuholníka je l_2 = 5,7 cm. Pravý trojuholník je h = sqrt (l_1 ^ 2 + l_2 ^ 2) = sqrt (3.2 ^ 2 + 5.7 ^ 2) = sqrt42.73 = 6.54 (2dp) cm.