odpoveď:
vysvetlenie:
sklon
Takže, ak je sklon reqd. riadok je
Teraz používame Vzorec bodu sklonu pre reqd. známa
prejsť bodom
Tak, eqn. reqd. riadok, je,
Aká je rovnica priamky, ktorá prechádza (0, -1) a je kolmá na priamku, ktorá prechádza nasledujúcimi bodmi: (13,20), (16,1)?
Y = 3/19 * x-1 Sklon priamky prechádza (13,20) a (16,1) je m_1 = (1-20) / (16-13) = - 19/3 Poznáme stav Perpedikulárnosť medzi dvomi čiarami je súčinom ich sklonov rovným -1: .m_1 * m_2 = -1 alebo (-19/3) * m_2 = -1 alebo m_2 = 3/19 Takže prechádzajúca čiara (0, -1) ) je y + 1 = 3/19 * (x-0) alebo y = 3/19 * x-1 graf {3/19 * x-1 [-10, 10, -5, 5]} [Ans]
Aká je rovnica priamky, ktorá prechádza (-1,1) a je kolmá na priamku, ktorá prechádza nasledujúcimi bodmi: (13, -1), (8,4)?
Pozri nižšie uvedený postup riešenia: Najprv musíme nájsť sklon dvoch bodov problému. Sklon je možné nájsť pomocou vzorca: m = (farba (červená) (y_2) - farba (modrá) (y_1)) / (farba (červená) (x_2) - farba (modrá) (x_1)) Kde m je sklon a (farba (modrá) (x_1, y_1)) a (farba (červená) (x_2, y_2)) sú dva body na čiare. Nahradenie hodnôt z bodov problému dáva: m = (farba (červená) (4) - farba (modrá) (- 1)) / (farba (červená) (8) - farba (modrá) (13)) = (farba (červená) (4) + farba (modrá) (1)) / (farba (červená)
Aká je rovnica priamky, ktorá prechádza (-1,3) a je kolmá na priamku, ktorá prechádza nasledujúcimi bodmi: (6, -4), (5,2)?
Konečná odpoveď: 6y = x + 19 oe. Definujúca čiara, ktorá prechádza cez: (- 1, 3) ako l_1. Definujúca čiara, ktorá prechádza b: (6, -4), c: (5, 2) ako l_2. Nájdite gradient l_2. m_2 = (y_b-y_c) / (x_b-x_c) = (- 4-2) / (6-5) = - 6 l_2_ | _l_1 Takže m_1 = -1 / m_2 = -1 / -6 = rovnica 1/6 l_1: y-y_a = m_1 (x-x_a) y-3 = 1/6 (x + 1) 6y-18 = x + 1 6y = x + 19 Alebo ho chcete usporiadať.