Aký je vrchol y = 2x ^ 2 + 16x + 12?

Aký je vrchol y = 2x ^ 2 + 16x + 12?
Anonim

odpoveď:

vrchol: # (X, y) = (- 4, -20) #

vysvetlenie:

Previesť danú: # Y = 2x ^ 2 + 16x + 12 #

do všeobecnej formy vertexu: # Y = farby (zelená) (m) (x-farba (červená) (a)) ^ 2 + farba (modrá), (b) # s vrcholom na # (Farba (červená) (a), farba (modrá) (b)) #

# Y = 2 (x ^ 2 + 8x) 12

# y = 2 (x ^ 2 + 8xcolor (modrá) (+ 4 ^ 2)) + 12 farieb (modrá) (- 2 (4 ^ 2)) #

# Y = 2 (x + 4) ^ 2 až 20 #

# Y = farby (zelená) (2) (x-farba (červená) (farba (biela) ("") (- 4))) ^ 2 + farba (modrá) (farba (biela) ("" X) (-20)) #

#COLOR (biely) ("XXXXXX") #s vrcholom na # (Farba (červená) (farba (biela) ("") (- 4)), farba (modrá) (farba (biela) ("") (- 20))) #

graf {2x ^ 2 + 16x + 12 -16,64, 8,68, -21,69, -9,03}