odpoveď:
vysvetlenie:
Tento problém je možné vyriešiť použitím nejakej šikovnej algebry.
Problém je v skutočnosti
Napríklad
Teraz umožňuje priviesť ho späť do premenných a dať ho z hľadiska
Teraz odtiaľto budem graf hľadať možné hodnoty
graf {x ^ 3 + 6x ^ 2 + 8x + 6783 -207,8, 207,7, -108,3, 108,3}
Ako vidíte, je to dosť veľký graf, takže budem len ukazovať zmysluplnú časť, križovatku. Tu vidíme, že graf sa pretína v
Takže ak -21 je naše štartové číslo, naše nasledujúce čísla budú -19 a -17. Poďme testovať?
Výborne!
Teraz na výskum, aby zabezpečili, že som robil to dobrý spôsob, som vlastne našiel trik na týchto webových stránkach bol krátky malý trik niekto našiel. Ak vezmete koreň kocky produktu a zaokrúhlite číslo na najbližšie celé číslo, nájdete stredné nepárne číslo. Kocka koreňa
Teraz o tom triku, nie som si celkom istý, ako spoľahlivé je za všetkých okolností, ale ak máte kalkulačku (ktorá s touto algebrou dúfam, že áno), možno ju využite na kontrolu.
odpoveď:
ak nemusíte zobrazovať špecifickú algebraickú prácu (a najmä ak môžete použiť kalkulačku (myslím SAT)), tento konkrétny problém je vhodný aj pre záludnú skratku.
vysvetlenie:
Vzhľadom k tomu, že existujú tri neznáme hodnoty, ktoré sú postupné kurzy a teda všetky veľmi blízko k sebe …
Čo je to kostka
Oh, ale chceli sme
Produkt dvoch po sebe idúcich nepárnych celých čísel je 29 menej ako 8 násobok ich súčtu. Nájdite dve celé čísla. Odpoveď vo forme párových bodov s najnižšou z dvoch celých čísel ako prvý?
(13, 15) alebo (1, 3) Nech x a x + 2 sú nepárne po sebe idúce čísla, potom podľa otázky máme (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 alebo 1 Teraz, PRÍPAD I: x = 13:. x + 2 = 13 + 2 = 15:. Čísla sú (13, 15). PRÍPAD II: x = 1:. x + 2 = 1+ 2 = 3:. Čísla sú (1, 3). Preto, ako sa tu tvoria dva prípady; dvojica čísel môže byť (13, 15) alebo (1, 3).
Súčet troch po sebe idúcich nepárnych čísel je viac ako 207, ako zistíte minimálne hodnoty týchto celých čísel?
69, 71 a 73 Prvé nepárne: x Druhé nepárne: x + 2 (2 väčšie ako prvé, na preskočenie párneho čísla medzi Tretím nepárnym: x + 4 Pridať všetky tri: x + x + 2 + x + 4 = 3x + 6 Teraz to nastavme na 207: 3x + 6 = 207 Odčítanie 6: 3x = 201 Delenie 3: x = 67 Naše čísla sú x = 67 x + 2 = 69 x + 4 = 71 .... Nie tak rýchlo! 67 + 69 + 71 = 207, ale potrebujeme čísla, ktoré sú väčšie ako 207! To je jednoduché, musíme len presunúť najnižšie nepárne číslo (67), aby bolo len viac ako liché higheset (71). 69, 71 a 73, kt
Poznajúc vzorec k súčtu N celých čísel a) čo je súčet prvých N po sebe idúcich štvorcových celých čísel, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Súčet prvých N po sebe idúcich celých čísel kocky Sigma_ (k = 1) ^ N k ^ 3?
Pre S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Máme sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 riešenie pre sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n