odpoveď:
Dve po sebe idúce kladné celé čísla, ktorých produkt je
vysvetlenie:
Nech je prvé celé číslo
pretože druhý je po sebe idúci, potom je
Produkt týchto celých čísel je
Vypočítajte kvadratické korene:
Z tohto dôvodu
(tip:
alebo
Z tohto dôvodu
Prvé kladné číslo je:
Prvé kladné číslo je:
Dve po sebe idúce kladné celé čísla, ktorých produkt je
odpoveď:
vysvetlenie:
Neoddeliteľnou súčasťou riešenia takýchto otázok je pochopenie faktorov čísla a toho, čo nám hovoria.
Zvážte faktory 36:
Poznamenajte si nasledovné:
- Existujú dvojice faktorov. Každý malý faktor je spárovaný s veľkým faktorom.
- Ako sa zvyšuje, ostatné klesajú.
- Rozdiel medzi faktormi sa znižuje, keď pracujeme smerom dovnútra
- V strede je však len jeden faktor. Je to preto, že 36 je štvorec a stredným faktorom je jeho druhá odmocnina.
# sqrt36 = 6 # - Čím menší je rozdiel medzi faktormi akéhokoľvek čísla, tým bližšie sú k druhej odmocnine.
Teraz pre túto otázku ….. Skutočnosť, že párne čísla sú postupné znamená, že sú veľmi blízko k druhej odmocnine svojho produktu.
Vyskúšajte párne čísla najbližšie k tomuto číslu. Ešte o niečo viac, o niečo menej. Zistíme, že ……………
Toto sú čísla, ktoré hľadáme.
Ležia na oboch stranách
Produkt dvoch po sebe idúcich nepárnych celých čísel je 29 menej ako 8 násobok ich súčtu. Nájdite dve celé čísla. Odpoveď vo forme párových bodov s najnižšou z dvoch celých čísel ako prvý?
(13, 15) alebo (1, 3) Nech x a x + 2 sú nepárne po sebe idúce čísla, potom podľa otázky máme (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 alebo 1 Teraz, PRÍPAD I: x = 13:. x + 2 = 13 + 2 = 15:. Čísla sú (13, 15). PRÍPAD II: x = 1:. x + 2 = 1+ 2 = 3:. Čísla sú (1, 3). Preto, ako sa tu tvoria dva prípady; dvojica čísel môže byť (13, 15) alebo (1, 3).
Poznajúc vzorec k súčtu N celých čísel a) čo je súčet prvých N po sebe idúcich štvorcových celých čísel, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Súčet prvých N po sebe idúcich celých čísel kocky Sigma_ (k = 1) ^ N k ^ 3?
Pre S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Máme sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 riešenie pre sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n
Čo je stredné celé číslo 3 po sebe idúcich pozitívnych aj celé čísla, ak je produkt z menších dvoch celých čísel 2 menej ako 5 krát najväčšie celé číslo?
8 '3 po sebe idúce kladné aj celé čísla' môžu byť zapísané ako x; x + 2; x + 4 Produkt dvoch menších celých čísel je x * (x + 2) '5-násobok najväčšieho celého čísla' je 5 * (x +4):. x * (x + 2) = 5 * (x + 4) - 2 x ^ 2 + 2x = 5x + 20 - 2 x ^ 2 -3x-18 = 0 (x-6) (x + 3) = 0 môže vylúčiť negatívny výsledok, pretože celé čísla sú uvedené ako pozitívne, takže x = 6 Stredné celé číslo je preto 8