Zatiaľ čo sánkovanie po zasneženom kopci Ed spomalil z 5 m / s na odpočinok vo vzdialenosti 100 m. Čo bolo Edovo zrýchlenie?

Zatiaľ čo sánkovanie po zasneženom kopci Ed spomalil z 5 m / s na odpočinok vo vzdialenosti 100 m. Čo bolo Edovo zrýchlenie?
Anonim

odpoveď:

Keďže máte tiež čas ako neznáma hodnota, potrebujete 2 rovnice, ktoré tieto hodnoty kombinujú. Použitím rovníc rýchlosti a vzdialenosti pre spomalenie je odpoveď:

# a = 0,125 m / s ^ 2 #

vysvetlenie:

1. spôsob

Toto je jednoduchá elementárna cesta. Ak ste v pohybe noví, chcete ísť touto cestou.

Ak je zrýchlenie konštantné, vieme, že:

# u = u_0 + a * t "" "" (1) #

# s = 1/2 * a * t ^ 2-u * t "" "" (2) #

Riešením #(1)# pre # T #:

# 0 = 5 + A * t #

# A * t = -5 #

# T = -5 / a #

Potom striedanie v #(2)#:

# 100 = 1/2 * a * t ^ 2-0 * t #

# 100 = 1/2 * a * t ^ 2 #

# 100 = 1/2 * a * (- 5 / a) ^ 2 #

# 100 = 1/2 * a * (- 5) ^ 2 / ^ 2 #

# 100 = 1/2 * 25 / A #

# a = 25 / (2 * 100) = 0,125 m / s ^ 2 #

2. spôsob

Táto cesta nie je pre začiatočníkov, pretože je to dráha počtu. Všetko, čo poskytuje, je skutočný dôkaz vyššie uvedených rovníc. Ja som len vysielanie v prípade, že máte záujem o to, ako to funguje.

Vediac, že # A = (du) / dt # môžeme transformovať pomocou pravidla reťazca prostredníctvom Leibnizovho zápisu:

# A = (du) / dt = (du) / dt * (dx) / dx = (dx) / dt * (du) / dx #

Vediac, že # U = (dx) / dt # dáva nám:

# A = u * (du) / dx #

Integráciou:

# A * dx = u * du #

# Aint_0 ^ 100dx = int_5 ^ 0udu #

# A * x _0 ^ 100 = u ^ 2/2 _5 ^ 0 #

# A * (100-0) = (0 ^ 2 / 2-5 ^ 2/2) #

# a = 5 ^ 2 / (2 * 100) = 25 / (2 * 100) = 1 / (2 * 4) = 0,125 m / s ^ 2 #