odpoveď:
vysvetlenie:
Rozsah funkcie je zoznam všetkých výsledných hodnôt (často nazývaných
Tu máme doménu
Čo je doména a rozsah 3x-2 / 5x + 1 a doména a rozsah inverzie funkcie?
Doména je celá s výnimkou -1/5, čo je rozsah inverznej. Rozsah je všetky reals okrem 3/5, ktorý je doménou inverzie. f (x) = (3x-2) / (5x + 1) je definovaná a reálne hodnoty pre všetky x okrem -1/5, takže je doména f a rozsah f ^ -1 Nastavenie y = (3x -2) / (5x + 1) a riešenie pre x výťažky 5xy + y = 3x-2, takže 5xy-3x = -y-2, a preto (5y-3) x = -y-2, takže nakoniec x = (- y-2) / (5R-3). Vidíme, že y! = 3/5. Takže rozsah f je všetky reals okrem 3/5. Toto je tiež doména f ^ -1.
Aký je rozsah funkcie y = –2x ^ 2 + x, keď je doména {1, 3, 5}?
Rozsah funkcie y (x) = - 2x ^ 2 + x, keď je doména {1,3,5}, je {y (1), y (3), y (5)}
Ktoré sú charakteristiky grafu funkcie f (x) = (x + 1) ^ 2 + 2? Skontrolujte všetky platné nastavenia. Doménou sú všetky reálne čísla. Rozsah je všetky reálne čísla väčšie alebo rovné 1. Prerušenie y je 3. Graf funkcie je 1 jednotka hore a
Prvý a tretí sú pravdivé, druhý je nepravdivý, štvrtý je nedokončený. - Doména je naozaj všetky reálne čísla. Túto funkciu môžete prepísať ako x ^ 2 + 2x + 3, čo je polynóm a ako taká má doménu hbbb {R} Rozsah nie je všetky reálne číslo väčšie alebo rovné 1, pretože minimum je 2. In fakt. (x + 1) ^ 2 je horizontálny preklad (jedna jednotka vľavo) parabola x ^ 2, ktorá má rozsah [0, infty). Keď pridáte 2, posuniete graf vertikálne o dve jednotky, takže rozsah je [2, infty] Ak chcete vypoč