odpoveď:
vysvetlenie:
Obdobie ako sin kt, tak cos kt je
Obdobie dvoch výrazov v písmene f (t) je teda oddelené
Pre súčet je zložené obdobie dané hodnotou
L = 13 a M = 1. Spoločná hodnota =
kontrola:
Ukážte, že cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Som trochu zmätený, ak urobím Cos²4π / 10 = cos² (π-6π / 10) & cos²9π / 10 = cos² (π-π / 10), bude záporný ako cos (180 ° -theta) = - costheta v druhý kvadrant. Ako mám ísť na preukázanie otázky?
Pozri nižšie. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
Aké je obdobie a základné obdobie y (x) = sin (2x) + cos (4x)?
Y (x) je súčtom dvoch trignometrických funkcií. Obdobie sin 2x by bolo (2pi) / 2, čo je pi alebo 180 stupňov. Obdobie cos4x by bolo (2pi) / 4, čo je pi / 2 alebo 90 stupňov. Nájdite LCM 180 a 90. To by bolo 180. Preto by perióda danej funkcie bola pi
Aká je perióda f (t) = sin (t / 13) + cos ((13t) / 24)?
Obdobie je = 4056pi Perioda T periodickej funkcie je taká, že f (t) = f (t + T) Tu f (t) = sin (1 / 13t) + cos (13 / 24t) Preto f ( t + T) = sin (1/13 (t + T)) + cos (13/24 (t + T)) = sin (1 / 13t + 1 / 13T) + cos (13 / 24t + 13 / 24T) = sin (1 / 13T) cos (1 / 13T) + cos (1 / 13T) sin (1 / 13T) + cos (13 / 24t) cos (13 / 24T) -sin (13/24 t) sin (13 / 24T) As, f (t) = f (t + T) {(cos (1 / 13T) = 1), (sin (1 / 13T) = 0), (cos (13 / 24T) = 1), ( sin (13 / 24T) = 0):} <=>, {(1 / 13T = 2pi), (13 / 24T = 2pi):} <=>, {(T = 26pi = 338pi), (T = 48 / 13pi = 48pi):} <=>, T = 4056pi