odpoveď:
vysvetlenie:
Podľa tretieho zákona Keplera,
Uvažujme
nechať
Diferenciálne výnosy
teda
Kde je funkcia
má derivát
a preto sa v intervale monotónne znižuje
To znamená, že uhlová rýchlosť
takže,
a tak je pomer medzi týmito dvoma hodnotami:
Poznámka Skutočnosť, že
Merania dvoch uhlov majú súčet 90 stupňov. Merania uhlov sú v pomere 2: 1, ako určujete miery oboch uhlov?
Menší uhol je 30 stupňov a druhý uhol je dvakrát väčší ako 60 stupňov. Zavoláme menší uhol a. Pretože pomer uhlov je 2: 1, druhý alebo väčší uhol je: 2 * a. A vieme, že súčet týchto dvoch uhlov je 90, takže môžeme písať: a + 2a = 90 (1 + 2) a = 90 3a = 90 (3a) / 3 = 90/3 a = 30
Súčet rozmerov vnútorných uhlov šesťuholníka je 720 °. Merania uhlov určitého šesťuholníka sú v pomere 4: 5: 5: 8: 9: 9, Aké sú miery týchto uhlov?
72 °, 90 °, 90 °, 144 °, 162 °, 162 ° Uvedené hodnoty sú vždy v najjednoduchšej forme. Nech x je HCF, ktorý bol použitý na zjednodušenie veľkosti každého uhla. 4x + 5x + 5x + 8x + 9x + 9x = 720 ° 40x = 720 ° x = 720/40 x = 18 Uhly sú: 72 °, 90 °, 90 °, 144 °, 162 °, 162 °
Dva satelity hmotností „M“ resp. „M“ sa otáčajú okolo Zeme v rovnakej kruhovej dráhe. Satelit s hmotnosťou 'M' je ďaleko dopredu od iného satelitu, potom ako môže byť prekonaný iným satelitom? Vzhľadom k tomu, M> m & ich rýchlosť je rovnaká
Satelit s hmotnosťou M, ktorý má orbitálnu rýchlosť v_o, sa otáča okolo Zeme s hmotnosťou M_e vo vzdialenosti R od stredu Zeme. Kým systém je v rovnovážnej dostredivej sile v dôsledku kruhového pohybu, je rovnaký a opačný k gravitačnej sile príťažlivosti medzi zemou a satelitom. Pri obidvoch máme (Mv ^ 2) / R = G (MxxM_e) / R ^ 2, kde G je univerzálna gravitačná konštanta. => v_o = sqrt ((GM_e) / R) Vidíme, že orbitálna rýchlosť je nezávislá od hmotnosti satelitu. Preto, akonáhle je umiestnený na kruhovej o