odpoveď:
Použite pravidlo pravidla a reťazec. Odpoveď je:
Toto je zjednodušená verzia. vidieť vysvetlenie sledovať, do akej miery môže byť prijatá ako derivát.
vysvetlenie:
V tejto forme je to skutočne prijateľné. Na ďalšie zjednodušenie:
Aká je prvá derivácia a druhá derivácia 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(prvý derivát)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druhá derivácia)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 x 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(prvý derivát)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druhá derivácia)"
Aká je derivácia lnx ^ lnx?
= 2 (ln x) / x (lnx ^ lnx) ^ '= (ln x lnx) ^' = (ln ^ 2 x) ^ '= 2 ln x * 1 / x
Aký je prvý derivát a druhá derivácia x ^ 4 - 1?
F ^ '(x) = 4x ^ 3 f ^' '(x) = 12x ^ 2, aby sme našli prvú deriváciu, musíme jednoducho použiť tri pravidlá: 1. Pravidlo výkonu d / dx x ^ n = nx ^ (n-1 ) 2. Konštantné pravidlo d / dx (c) = 0 (kde c je celé číslo a nie premenná) 3. Pravidlo súčtu a rozdielu d / dx [f (x) + - g (x)] = [f ^ ' (x) + - g ^ '(x)] prvá derivácia má za následok: 4x ^ 3-0, čo uľahčuje 4x ^ 3 nájsť druhú deriváciu, musíme odvodiť prvý derivát opätovným uplatnením mocenského pravidla, ktoré má za n