odpoveď:
vysvetlenie:
odpoveď:
vysvetlenie:
Aká je prvá derivácia a druhá derivácia 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(prvý derivát)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druhá derivácia)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 x 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(prvý derivát)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(druhá derivácia)"
Čo je derivácia f (x) = (x ^ 3- (lnx) ^ 2) / (lnx ^ 2)?
Použite pravidlo pravidla a reťazec. Odpoveď je: f '(x) = (3x ^ 3lnx ^ 2-2 (lnx) ^ 2-2x ^ 3) / (x (lnx ^ 2) ^ 2) Toto je zjednodušená verzia. Pozrite si Vysvetlenie, na ktoré sa chcete pozerať, do ktorého bodu ho možno prijať ako derivát. f (x) = (x ^ 3- (lnx) ^ 2) / lnx ^ 2 f '(x) = ((x ^ 3- (lnx) ^ 2)' * lnx ^ 2- (x ^ 3- ( lnx) ^ 2) (lnx ^ 2) ') / (lnx ^ 2) ^ 2 f' (x) = ((3x ^ 2-2lnx * (lnx) ') * lnx ^ 2- (x ^ 3- ( lnx) ^ 2) 1 / x ^ 2 (x ^ 2) ') / (lnx ^ 2) ^ 2 f' (x) = ((3x ^ 2-2lnx * 1 / x) * lnx ^ 2- (x ^ 3- (lnx) ^ 2) 1 / x ^ 2 * 2x) / (lnx ^ 2) ^ 2 V tejto forme je
Aký je prvý derivát a druhá derivácia x ^ 4 - 1?
F ^ '(x) = 4x ^ 3 f ^' '(x) = 12x ^ 2, aby sme našli prvú deriváciu, musíme jednoducho použiť tri pravidlá: 1. Pravidlo výkonu d / dx x ^ n = nx ^ (n-1 ) 2. Konštantné pravidlo d / dx (c) = 0 (kde c je celé číslo a nie premenná) 3. Pravidlo súčtu a rozdielu d / dx [f (x) + - g (x)] = [f ^ ' (x) + - g ^ '(x)] prvá derivácia má za následok: 4x ^ 3-0, čo uľahčuje 4x ^ 3 nájsť druhú deriváciu, musíme odvodiť prvý derivát opätovným uplatnením mocenského pravidla, ktoré má za n