odpoveď:
x =
vysvetlenie:
Ktorý nasleduje vo forme:
Vyriešite to pomocou diskriminačného
A> 0, takže má dve rôzne riešenia
x1 =
x1 =
x2 =
x2 =
Je známe, že rovnica bx ^ 2- (a-3b) x + b = 0 má jeden skutočný koreň. Dokážte, že rovnica x ^ 2 + (a-b) x + (ab-b ^ 2 + 1) = 0 nemá žiadne skutočné korene.?
Pozri nižšie. Korene pre bx ^ 2- (a-3b) x + b = 0 sú x = (a - 3 b pmsqrt [a ^ 2 - 6 ab + 5 b ^ 2]) / (2 b) Korene sa zhodujú a reálne, ak ^ 2 - 6 ab + 5 b ^ 2 = (a - 5 b) (a - b) = 0 alebo a = b alebo a = 5b Teraz riešenie x ^ 2 + (ab) x + (ab-b ^ 2 + 1) = 0 máme x = 1/2 (-a + b pm sqrt [a ^ 2 - 6 ab + 5 b ^ 2-4]) Podmienkou pre komplexné korene je ^ 2 - 6 ab + 5 b ^ 2-4 lt 0 teraz a = b alebo a = 5b máme a ^ 2 - 6 ab + 5 b ^ 2-4 = -4 <0 Záver, ak bx ^ 2- (a-3b) x + b = 0 má koincidenčné skutočné korene, potom x ^ 2 + (ab) x + (ab-b ^ 2 + 1) = 0 bude mať komplexné k
Aké sú integrálne hodnoty k, pre ktoré má rovnica (k-2) x ^ 2 + 8x + (k + 4) = 0) oba korene reálne, odlišné a negatívne?
-6 <k <4 Pre korene, ktoré majú byť reálne, odlišné a možno záporné, Delta> 0 Delta = b ^ 2-4a Delta = 8 ^ 2-4 (k-2) (k + 4) Delta = 64-4 ( k ^ 2 + 2k-8) Delta = 64-4k ^ 2-8k + 32 Delta = 96-4k ^ 2-8k Vzhľadom k tomu, Delta> 0, 96-4k ^ 2-8k> 0 4k ^ 2 + 8k-96 < 0 (4k + 24) (k-4) <0 4 (k + 6) (k-4) <0 graf {y = 4 (x + 6) (x-4) [-10, 10, -5, 5]} Z vyššie uvedeného grafu vidíme, že rovnica je pravdivá len vtedy, ak je -6 <k <4 Preto ,, iba celé čísla medzi -6 <k <4 môžu byť korene negatívne, odlišné a skutočné
Q.1 Ak alfa, beta sú korene rovnice x ^ 2-2x + 3 = 0, získajte rovnicu, ktorej korene sú alfa ^ 3-3 alfa ^ 2 + 5 alfa -2 a beta ^ 3-beta ^ 2 + beta + 5?
Q.1 Ak alfa, beta sú korene rovnice x ^ 2-2x + 3 = 0, získajte rovnicu, ktorej korene sú alfa ^ 3-3 alfa ^ 2 + 5 alfa -2 a beta ^ 3-beta ^ 2 + beta + 5? Odpoveď daná rovnica x ^ 2-2x + 3 = 0 => x = (2pmsqrt (2 ^ 2-4 * 1 * 3)) / 2 = 1pmsqrt2i Nech alfa = 1 + sqrt2i a beta = 1-sqrt2i Teraz nech gamma = a ^ 3-3 a ^ 2 + 5 alfa-2 => gama = a ^ 3-3 a ^ 2 + 3 alfa-1 + 2alfa-1 => gama = (alfa-1) ^ 3 + alfa-1 + alpha => gamma = (sqrt2i) ^ 3 + sqrt2i + 1 + sqrt2i => gamma = -2sqrt2i + sqrt2i + 1 + sqrt2i = 1 A nech delta = beta ^ 3-beta ^ 2 + beta + 5 => delta = beta ^ 2 (beta-1) + beta + 5 =>