odpoveď:
Pomocou rovnice dvoch súradníc zistite rovnicu priamky.
vysvetlenie:
Neviem, či podľa sklonu máte na mysli rovnicu čiary alebo jednoducho gradient.
Metóda len gradientu
Ak chcete získať gradient si jednoducho urobiť
Vzorec rozšírený znamená, že robíme
Pre váš príklad nahrádzame hodnoty, do ktorých sa dostaneme
Toto sa zmení na
Metóda rovnej priamky
Pokiaľ ide o úplnú rovnicu, použijeme dva súradnicové vzorce.
Tento vzorec je:
Ak nahradíme vaše hodnoty, dostaneme:
Vyčistenie negatív:
Zjednodušenie získame:
Teraz musíme zmeniť tento výraz do formulára
Aby sme to urobili, najprv vynásobíme obe strany o 4, aby sme odstránili zlomok. Ak to urobíme, dostaneme:
Potom vynásobíme obe strany o 3, aby sme odstránili druhú frakciu. To nám dáva:
Vezmite 9 z oboch strán, aby ste si mohli vybrať sami:
Potom delte 3:
V tomto prípade môžete tiež získať gradient ako
Zaujímavé je, že môžeme použiť aj
(8, 1) a (6, 4) prechádza čiara. Druhou čiarou prechádza (3, 5). Aký je ďalší bod, ktorým môže prechádzať druhý riadok, ak je rovnobežný s prvým riadkom?
(1,7) Takže najprv musíme nájsť smerový vektor medzi (8,1) a (6,4) (6,4) - (8,1) = (- 2,3) Vieme, že vektorová rovnica je tvorený polohovým vektorom a smerovým vektorom. Vieme, že (3,5) je pozícia na vektorovej rovnici, takže ju môžeme použiť ako náš pozičný vektor a vieme, že je rovnobežná s druhou čiarou, takže môžeme použiť tento smerový vektor (x, y) = (3, 4) + s (-2,3) Ak chcete nájsť ďalší bod na riadku, nahraďte ľubovoľné číslo na s, okrem 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Ďalším bodom je tak (1,7).
Linka prechádza (4, 3) a (2, 5). Druhou čiarou prechádza (5, 6). Aký je ďalší bod, ktorým môže prechádzať druhý riadok, ak je rovnobežný s prvým riadkom?
(3,8) Takže najprv musíme nájsť smerový vektor medzi (2,5) a (4,3) (2,5) - (4,3) = (- 2,2) Vieme, že vektorová rovnica je tvorený polohovým vektorom a smerovým vektorom. Vieme, že (5,6) je pozícia na vektorovej rovnici, takže ju môžeme použiť ako náš pozičný vektor a vieme, že je rovnobežná s druhou čiarou, takže môžeme použiť tento smerový vektor (x, y) = (5, 6) + s (-2,2) Ak chcete nájsť iný bod na riadku, nahraďte ľubovoľné číslo v od seba od 0, takže si môžete vybrať 1 (x, y) = (5,6) +1 (-2,2) = (3,8) Takže (3,8) je ďalší
Aký je sklon priamky, ktorá prechádza bodom ( 1, 1) a je rovnobežná s čiarou, ktorá prechádza (3, 6) a (1, 2)?
Váš sklon je (-8) / - 2 = 4. Svahy rovnobežiek sú rovnaké ako majú rovnaký vzostup a bežia na grafe. Sklon je možné nájsť pomocou "svahu" = (y_2-y_1) / (x_2-x_1). Preto, ak vložíme čísla riadku rovnobežne s originálom, dostaneme "sklon" = (-2 - 6) / (1-3). To potom zjednoduší na (-8) / (- 2). Váš nárast alebo čiastka, ktorá sa zvýši o -8 a váš beh alebo čiastka, ktorú spraví, je -2.