PRAVDA ALEBO LOŽ; Má f (x) = 6acx³ + 4bcx² + 9adx + 6bd dve protiľahlé nuly, ak c xxd> 0? Ďakujem!

PRAVDA ALEBO LOŽ; Má f (x) = 6acx³ + 4bcx² + 9adx + 6bd dve protiľahlé nuly, ak c xxd> 0? Ďakujem!
Anonim

odpoveď:

Pozri nižšie.

vysvetlenie:

# 6acx³ + 4bcx² + 9adx + 6bd = 0 rArr x ^ 3 + (4b) / (6a) x ^ 2 + (9d) / (6c) x + (bd) / (ac) = 0 # alebo

# x ^ 3 (2b) / (3a) x ^ 2 + (3d) / (2c) x + (bd) / (ac) = 0 #

Teraz, ak majú dva korene opačné znamenia Vietovho vzorca

# {(- (x_1-x_1 + x_3) = (2b) / (3a)), (- x_1 ^ 2 + x_1 x_3 - x_1 x_3 = (3d) / (2c)), (- (- x_1 ^ 2 x_3) = (bd) / (ac)):} #

alebo

# {(x_3 = - (2b) / (3a)), (x_1 ^ 2 = - (3d) / (2c)), (x_1 ^ 2 x_3 = (bd) / (ac)):} #

alebo na záver

#d <0, c <0 rArr dc> 0 #