odpoveď:
Derivácia nuly je nulová. To dáva zmysel, pretože je to konštantná funkcia.
vysvetlenie:
Definícia limitu derivácie:
Nula je funkcia x taká
tak
odpoveď:
Odpoveď je 0.
vysvetlenie:
Ako zistíte deriváciu f (x) = 3x ^ 5 + 4x pomocou definície limitu?
F '(x) = 15x ^ 4 + 4 Základným pravidlom je, že x ^ n sa stane nx ^ (n-1) Takže 5 * 3x ^ (5-1) + 1 * 4x ^ (1-1) Čo je f , (x) = 15x ^ 4 + 4
Ako zistíte deriváciu g (x) = 2 / (x + 1) pomocou definície limitu?
= 2 / (x + 1) ^ 2f '(x) = lim_ (hrarr0) (f (x + h) -f (x)) / h = lim_ (hrarr0) (-2 / (x + h + 1) ) + 2 / (x + 1)) / h = lim_ (hrarr0) ((- 2 (x + 1)) / ((x + h + 1) (x + 1)) + (2 (x + h + 1)) / ((x + h + 1) (x + 1)) / h = lim_ (hrarr0) ((2h) / ((x + h + 1) (x + 1)) / h = lim_ (hrarr0) 2 / ((x + h + 1) (x + 1)) = 2 / (x + 1) ^ 2
Ako použiť definíciu limitu derivátu na nájdenie derivátu y = -4x-2?
-4 Definícia derivátu je definovaná takto: lim (h-> 0) (f (x + h) -f (x)) / h Použime vyššie uvedený vzorec na danú funkciu: lim (h-> 0) (f (x + h) -f (x)) / h = lim (h-> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h-> 0) ) (- 4x-4h-2 + 4x + 2) / h = lim (h-> 0) ((- 4h) / h) Zjednodušenie pomocou h = lim (h-> 0) (- 4) = -4