Toto je rozdelenie komplexných čísel. Najprv musíme premeniť menovateľa na reálne číslo; Robíme to násobením a delením komplexná konjugácia menovateľa (
ale
Ktorý je vo forme
Napíšte štandardné číslo komplexu (-5 - 3i) / (4i)?
(-5-3i) / (4i) = - 3/4 + 5 / 4i Chceme komplexné číslo vo forme + bi. Je to trochu zložitejšie, pretože v menovateli máme imaginárnu časť a reálne číslo nemôžeme rozdeliť imaginárnym číslom. Môžeme to však vyriešiť pomocou malého triku. Ak znásobíme hornú aj dolnú časť pomocou i, môžeme získať reálne číslo v dolnej časti: (-5-3i) / (4i) = (i (-5-3i)) / (i * 4i) = (- 5i 3) / (- 4) = - 3/4 + 5 / 4i
Čo je skutočné číslo, celé číslo, celé číslo, racionálne číslo a iracionálne číslo?
Vysvetlenie Nižšie racionálne čísla sú v troch rôznych formách; celé čísla, zlomky a končiace alebo opakujúce sa desatinné miesta, napríklad 1/3. Iracionálne čísla sú celkom "chaotický". Nemôžu byť napísané ako zlomky, sú to nekonečné, neopakujúce sa desatinné miesta. Príkladom je hodnota π. Celé číslo možno nazvať celé číslo a je buď kladné alebo záporné číslo alebo nula. Príkladom toho je 0, 1 a -365.
Jedno číslo je 4 menej ako 3 krát druhé číslo. Ak je 3 viac ako dvakrát, prvé číslo sa zníži o dvojnásobok druhého čísla, výsledkom je 11. Použite substitučnú metódu. Aké je prvé číslo?
N_1 = 8 n_2 = 4 Jedno číslo je o 4 menšie ako -> n_1 =? - 4 3 krát "........................." -> n_1 = 3? -4 farba druhého čísla (hnedá) (".........." -> n_1 = 3n_2-4) farba (biela) (2/2) Ak 3 ďalšie "... ........................................ "->? +3 ako dvojnásobok prvé číslo "............" -> 2n_1 + 3 je znížené o "......................... .......... "-> 2n_1 + 3-? 2-krát druhé číslo "................." -> 2n_1 + 3-2n_2 výsledok je 11 farieb (hnedý) ("......