odpoveď:
vysvetlenie:
Desatinné miesta môžu byť zapísané ako zlomky s menovateľmi, ktoré sú právomocami
Mohli by sme to zjednodušiť
Ak pridáme, dostaneme:
Súčet dvoch celých čísel je sedem a súčet ich štvorcov je dvadsaťpäť. Čo je výsledkom týchto dvoch celých čísel?
12 Dané: x + y = 7 x ^ 2 + y ^ 2 = 25 Potom 49 = 7 ^ 2 = (x + y) ^ 2 = x ^ 2 + y ^ 2 + 2xy = 25 + 2xy Odčítanie 25 od oboch koncov získať: 2xy = 49-25 = 24 Rozdeľte obe strany 2, aby ste získali: xy = 24/2 = 12 #
Poznajúc vzorec k súčtu N celých čísel a) čo je súčet prvých N po sebe idúcich štvorcových celých čísel, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Súčet prvých N po sebe idúcich celých čísel kocky Sigma_ (k = 1) ^ N k ^ 3?
Pre S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Máme sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 riešenie pre sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n
Winnie preskočil počítaný 7s od 7 a napísal celkovo 2 000 čísel, Grogg skip počítal 7 od začiatku na 11 a celkovo napísal 2 000 čísel Aký je rozdiel medzi súčtom všetkých čísel Grogga a súčtom všetkých čísel Winnie?
Pozri nižšie uvedený postup riešenia: Rozdiel medzi prvým číslom Winnieho a Grogga je: 11 - 7 = 4 Obaja napísali 2000 čísel Obaja preskočili počítané rovnakou sumou - 7s Preto rozdiel medzi každým číslom Winnie napísal a každé číslo Grogg napísal je tiež 4 Preto rozdiel v súčte čísel je: 2000 xx 4 = farba (červená) (8000)