Integrovať lnx / 10 ^ x?

Integrovať lnx / 10 ^ x?
Anonim

odpoveď:

chyba

vysvetlenie:

#int (LNX) / 10 ^ XDX # môže byť tiež napísané ako #int (LNX) xx10 ^ (- x) dx #.

Teraz môžeme použiť vzorec pre integrál produktu

# Intu * v * dx = u * v-int (v * du) #, kde # U = LNX #

Ako taký máme # Du = (1 / x) dx # a nechať # Dv = x ^ (- 10) dx # alebo # V = x ^ (- 9) / - 9 #

Z toho dôvodu, # Intu * v * dx = (- 1/9) lnx.x ^ (- 9) -int (x ^ (- 9) / - 9) * dx / x #, alebo

= # (- 1/9) lnx.x ^ (- 9) + (1/9) intx ^ (- 10) * dx #

= # (- 1/9) lnx.x ^ (- 9) + (1/9) x ^ (- 9) / (- 9) + c #

= # (- 1/9) lnx.x ^ (- 9) - (1/81) x ^ (- 9) + c #

= # -1/81 (x ^ (- 9)) (9lnx + 1) + c #

odpoveď:

Zdá sa, že nekonečné série sú pre mňa neoddeliteľnou súčasťou.

vysvetlenie:

Môžeme použiť vzorec pre integrál produktu dvoch funkcií #u (x) a v (x) #

# intucdotdv = ucdotv-int vcdotdu #

(pravidlo možno jednoducho odvodiť integráciou pravidla diferenciácie produktu)

Daný integrál #intln (x) // 10 ^ xcdotdx # možno písať ako

#intln (x) xx10 ^ (- x) cdotdx #

nechať # u = ln (x) a dv = 10 ^ (- x) cdot dx #

z prvého predpokladu # du = 1 / x cdotdx #

z druhej rovnosti # v = int 10 ^ -x cdot dx = -1 / ln 10 10 ^ -x + C #

Dostaneme #intln (x) xx10 ^ (- x) cdotdx = ln (x) cdot (-1 / ln 10 10 ^ -x + C) -int (-1 / ln 10 10 ^ -x + C) cdot 1 / xcdot dx #

Kde # C # je konštanta integrácie.

# = ln (x) cdot (-1 / ln 10 10 ^ -x + C) + int1 / ln 10 10 ^ -xcdot 1 / xcdot dx-intCcdot 1 / xcdot dx #

# = ln (x) cdot (-1 / ln 10 10 ^ -x + C) + int1 / ln 10 10 ^ -xcdot 1 / xcdot dx-Ccdot ln | x | + C_2, #zjednodušením

# = ln (x) cdot (-1 / ln 10 10 ^ -x) + 1 / ln 10 int 10 ^ -xcdot 1 / xcdot dx + C_2 #

Znižuje sa na nájdenie integrálu # intx ^ -1cdot 10 ^ -xcdot dx #

Opäť s použitím vyššie uvedeného integrálneho vzorca

nechať # U = x ^ -1 # a # dv = 10 ^ (- x) cdot dx #

# du = -x ^ -2cdot dx # a už máme hodnotu # V #

# intx ^ -1cdot 10 ^ -xcdot dx = x ^ -1cdot (-1 / ln 10 10 ^ -x + C) -int (-1 / ln 10 10 ^ -x + C) cdot (-x ^ -2cdot dx) #

  1. Inšpekcia ukáže, že sa zistilo, že je to nález #int 10 ^ -xcdot x ^ -2cdot dx # a tak ďalej.
  2. funkcie #ln (x) # je definovaná iba pre #X> 0 #
  3. Integrál sa javí ako nekonečný sériový integrál.

odpoveď:

# (lny) (ln (ln_10 y)) - lny = (lny) (ln (ln_10 y) -1) #

Potom dajte dovnútra # 10 ^ x # pre #y #

# (ln 10 ^ x) (ln (ln_10 10 ^ x) -ln 10 ^ x #

vysvetlenie:

nechať # Y = 10 ^ x #

# LNY = ln10 ^ x #

# LNY = x * ln10 #

# x = lny / ln10 = ln_10y = log_10exxlog_e y #

#:. Dx = log_10exx1 / yxxdy #

#int (ln (ln_10 y)) / yxxlog_10exx1 / yxxdy #

# = int (ln (ln_10 y)) / y ^ 2xxlog_10exxdy; u = ln (ln_10 y) = ln (1 / ln10 * lny), dv = 1 / y #

# du = 1 / (ln y / ln10) * 1 / (yln10) = (ln10 / lny) (1 / (yln10)) = 1 / (ylny) #

# V = LNY #

# uv-intvdu -> (ln (ln_10 y)) lny-intlny * 1 / (ylny) #

# (lny) (ln (ln_10 y)) - int1 / y #

# (lny) (ln (ln_10 y)) - lny = (lny) (ln_10 y-1) #

Potom dajte dovnútra # 10 ^ x # pre #y #

#ln 10 ^ x (ln (ln_10 10 ^ x) -ln 10 ^ x #

#PROOF: #

# d / dy ((lny) (ln (ln_10 y) -1)) #

# f = lny, g = ln (ln_10 y) -1) #

# f '= 1 / y, g' = (1 / ln_10y) (1 / (yln10)) #

# Fg '+ gf' #---> pravidlo produktu

#lny * (1 / ln_10y) (1 / (yln10)) + (ln (ln_10y) -1) * 1 / y #

#lny (1 / (lny / ln10)) (1 / (yln10)) + (ln (ln_10y) -1) * 1 / y #

# lny (ln10 / lny) (1 / (yln10)) + (ln (ln_10y) -1) * 1 / y #

# 1 / y + (ln (ln_10 y) -1) / y #

# ((1 + ln (ln_10 y) -1)) / y #

# (Ln (ln_10y)) / y #

#ln (x) / 10 ^ x #---># ln_10 y = x # zhora