Aké sú extrémne a sedlové body f (x) = 2x ^ 2 lnx?

Aké sú extrémne a sedlové body f (x) = 2x ^ 2 lnx?
Anonim

Oblasť definície:

#f (x) = 2x ^ 2lnx #

je interval #x in (0, + oo) #.

Vyhodnoťte prvý a druhý derivát funkcie:

# (df) / dx = 4xlnx + 2x ^ 2 / x = 2x (1 + 2lnx) #

# (d ^ 2f) / dx ^ 2 = 2 (1 + 2lnx) + 2x * 2 / x = 2 + 4lnx + 4 = 6 + lnx #

Kritickými bodmi sú riešenia:

#f '(x) = 0 #

# 2x (1 + 2lnx) = 0 #

a ako #x> 0 #:

# 1 + 2lnx = 0 #

#lnx = -1 / 2 #

#x = 1 / sqrt (e) #

V tomto bode:

#f '' (1 / sqrte) = 6-1 / 2 = 11/2> 0 #

takže kritický bod je lokálne minimum.

Sedlové body sú riešenia:

#f '' (x) = 0 #

# 6 + lnx = 0 #

#lnx = -6 #

# x = 1 / e ^ 6 #

a ako # F '' (x) # je monotónne zvýšenie môžeme konštatovať, že # F (x) # je konkávne dolu #x <1 / e ^ 6 # a konkávne #x> 1 / e ^ 6 #

graf {2x ^ 2lnx -0,2943, 0,9557, -0,4625, 0,1625}