odpoveď:
vysvetlenie:
# "Všimnite si, že po sebe idúce nepárne čísla majú rozdiel" #
# 2 medzi nimi #
# "nech sú 2 čísla" n "a" n + 2 #
# rArrn + n + 2 = -108larrcolor (modrý) "súčet čísel" #
# RArr2n + 2 = -108 #
# "odčítať" 2 "z oboch strán"
# RArr2n = -110rArrn = -55 #
# "a" n + 2 = -55 + 2 = -53 #
# "2 čísla sú" -55 "a" -53 #
Produkt dvoch po sebe idúcich nepárnych celých čísel je 29 menej ako 8 násobok ich súčtu. Nájdite dve celé čísla. Odpoveď vo forme párových bodov s najnižšou z dvoch celých čísel ako prvý?
(13, 15) alebo (1, 3) Nech x a x + 2 sú nepárne po sebe idúce čísla, potom podľa otázky máme (x) (x + 2) = 8 (x + x + 2) - 29 :. x ^ 2 + 2x = 8 (2x + 2) - 29:. x ^ 2 + 2x = 16x + 16 - 29:. x ^ 2 + 2x - 16x - 16 + 29 = 0:. x ^ 2 - 14x + 13 = 0:. x ^ 2 -x - 13x + 13 = 0:. x (x - 1) - 13 (x - 1) = 0:. (x - 13) (x - 1) = 0:. x = 13 alebo 1 Teraz, PRÍPAD I: x = 13:. x + 2 = 13 + 2 = 15:. Čísla sú (13, 15). PRÍPAD II: x = 1:. x + 2 = 1+ 2 = 3:. Čísla sú (1, 3). Preto, ako sa tu tvoria dva prípady; dvojica čísel môže byť (13, 15) alebo (1, 3).
Súčet dvoch po sebe idúcich nepárnych celých čísel je 56, ako zistíte dve nepárne celé čísla?
Nepárne čísla sú 29 a 27 Existuje niekoľko spôsobov, ako to dosiahnuť. Ja som sa rozhodol použiť deriváciu metódy nepárneho čísla. Ide o to, že sa používa to, čo nazývam hodnota semena, ktorá musí byť konvertovaná, aby sa dosiahla požadovaná hodnota. Ak je číslo deliteľné 2, čo dáva celočíselnú odpoveď, potom máte párne číslo. Ak chcete previesť túto hodnotu na nepárne, pridajte alebo odčítajte 1 '~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ fa
Poznajúc vzorec k súčtu N celých čísel a) čo je súčet prvých N po sebe idúcich štvorcových celých čísel, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Súčet prvých N po sebe idúcich celých čísel kocky Sigma_ (k = 1) ^ N k ^ 3?
Pre S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2 S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Máme sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 0 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 riešenie pre sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni ale sum_ {i = 0} ^ ni = ((n + 1) n) / 2 so sum_ {i = 0} ^ ni ^ 2 = (n +1) ^ 3 / 3- (n