odpoveď:
vysvetlenie:
Prvý kvadrant
aj v prvom kvadrante, a tak,
teraz,
Ak je theta v druhom kvadrante ako
za čo je hriech
Tu,
Nech vec (x) je vektor, taký, že vec (x) = ( 1, 1), "a nech" "R (θ) = [(costheta, -sintheta), (sintheta, costheta)], tzn. operátor. Pre theta = 3 / 4pi nájsť vec (y) = R (theta) vec (x)? Vytvorte náčrt zobrazujúci x, y a θ?
Ukázalo sa, že ide o otáčanie proti smeru hodinových ručičiek. Dokážete odhadnúť, koľko stupňov? Nech T: RR ^ 2 | -> RR ^ 2 je lineárna transformácia, kde T (vecx) = R (theta) vecx, R (theta) = [(costheta, -sintheta), (sintheta, costheta)], vecx = << -1,1 >>. Všimnite si, že táto transformácia bola reprezentovaná ako transformačná matica R (theta). Znamená to, že R je rotačná matica, ktorá reprezentuje rotačnú transformáciu, môžeme ju znásobiť R x vecx, aby sme túto transformáciu vykonali. [(costheta, -sinthet
Ukážte, že (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
Pozri nižšie. Nech 1 + costheta + isintheta = r (cosalpha + isinalpha), tu r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (theta / 2) a tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) alebo alfa = theta / 2 potom 1 + costheta-isintheta = r (cos (-alfa) + isín (-alfa)) = r (cosalpha-isinalpha) a môžeme písať (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n pomocou vety DE MOivre ako r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosnalpha = 2 * 2 ^
Ako hodnotíte definitívny integrál int sin2theta z [0, pi / 6]?
Int_0 ^ (pi / 6) sin2theta = 1/4 int_0 ^ (pi / 6) sin (2theta) d theta nechať farbu (červenú) (u = 2theta) farbu (červenú) (du = 2d theta) farbu (červenú) ( d theta = (du) / 2) Hranice sú zmenené na farbu (modrá) ([0, pi / 3]) int_0 ^ (pi / 6) sin2thetad theta = int_color (modrá) 0 ^ farba (modrá) (pi / 3) sincolor (červená) (u (du) / 2) = 1 / 2int_0 ^ (pi / 3) sinudu Ako vieme, žeintsinx = -cosx = -1 / 2 (cos (pi / 3) -cos0) = -1 / 2 (1 / 2-1) = - 1/2 * -1 / 2 = 1/4 preto, int_0 ^ (pi / 6) sin2theta = 1/4