Ako zjednodušujete (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?

Ako zjednodušujete (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Anonim

odpoveď:

Obrovské formátovanie matematiky …

vysvetlenie:

#color (modrá) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) / (sqrt (a 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) #

# = Farba (červená) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a + 1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) #

# = Farba (modrá) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1)) # #

# = farba (červená) ((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)) xx (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1)) / sqrt (a + 1) #

# = farba (modrá) ((1 / sqrt (a-1) + sqrt (a + 1)) xx ((sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1) - sqrt (a + 1)) xx (zrušiť ((sqrt (a + 1)) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1)) / cancelsqrt (a + 1)) #

# = farba (červená) (((1 + sqrt (a + 1) cdot sqrt (a-1)) / (sqrt (a-1)) xx ((sqrt (a + 1) cdot sqrt (a-1))) / (sqrt (a-1) -sqrt (a + 1))) xx sqrt (a-1) cdot (sqrt (a-1) -sqrt (a + 1)) #

# = farba (modrá) (((1 + sqrt (a + 1) cdot sqrt (a-1)) / zrušiť (sqrt (a-1)) xx ((sqrt (a + 1) cdot zrušiť ((sqrt) (a-1)))) / farba (červená) (zrušiť (farba (zelená) ((sqrt (a-1) -sqrt (a + 1)))) xx sqrt (a-1) farba cdot (červená) (zrušiť farbu (zelená) ((sqrt (a-1) -sqrt (a + 1)) #

# = farba (červená) (ul (bar (| farba (modrá) ((1 + sqrt (a + 1) cdot sqrt (a-1)) cdot (sqrt ((a + 1) (a-1)))) | #

odpoveď:

#sqrt (a ^ 2-1) + a ^ 2-1 #

vysvetlenie:

Na zjednodušenie vecí použijeme # U ^ 2 = a + 1 # a # V ^ 2 = a-1 #, ktorá nám dáva:

# (V ^ -1 + U) / (u ^ -1-v ^ -1) * (uv ^ 2-vu ^ 2) / u = ((V ^ -1 + u) (uv ^ 2-vu ^ 2)) / (u (u ^ -1-v ^ -1)) = (UV-u ^ 2 + (UV) ^ 2-vu ^ 3) / (1-uv ^ -1) = (UV (1 + uV) -u ^ 2 (1 + uV)) / ((VU) / v) = (uV (1 + uV) (VU)) / (VU) = uv (1 + uV) #

#uv (1 + UV) = uv + u ^ 2v ^ 2 = sqrt (a-1) sqrt (a + 1) + (a-1), (a + 1) = sqrt (a ^ 2-1) + a ^ 2-1 #