odpoveď:
Pozri nižšie:
vysvetlenie:
Myslím si, že najlepší spôsob, ako to dosiahnuť, je zistiť, ako sa mení časové obdobie striedania:
Obdobie a frekvencia sú navzájom recipročné:
Časová perióda otáčania vlaku sa teda mení z 0,25 sekundy na 0,2 sekundy. Keď sa frekvencia zvyšuje. (Máme viac rotácií za sekundu)
Vlak však musí stále pokrývať celú vzdialenosť obvodu kruhovej dráhy.
Obvod kruhu:
Rýchlosť = vzdialenosť / čas
Potom môžeme v oboch scenároch nájsť dostredivú silu:
Ak je frekvencia 4 Hz:
Ak je frekvencia 5 Hz:
Zmena v platnosti:
Takže celková sila sa zvyšuje o cca
Na kruhovej dráhe s polomerom 3 m sa pohybuje modelový vlak s hmotnosťou 4 kg. Ak sa kinetická energia vlaku zmení z 12 J na 48 J, o koľko sa zmení dostredivá sila pôsobiaca na koľaje?
Zmeny centrálnej sily z 8N na 32N Kinetická energia K objektu s hmotnosťou m pohybujúcou sa rýchlosťou v je daná hodnotou 1 / 2mv ^ 2. Keď sa Kinetická energia zvyšuje 48/12 = 4-krát, rýchlosť sa zdvojnásobí. Počiatočná rýchlosť bude daná v = sqrt (2K / m) = sqrt (2xx12 / 4) = sqrt6 a po zvýšení kinetickej energie sa stane 2sqrt6. Keď sa objekt pohybuje v kruhovej dráhe konštantnou rýchlosťou, zažije dostredivú silu, ktorá je daná F = mv ^ 2 / r, kde: F je dostredivá sila, m je hmotnosť, v je rýchlosť a r je polome
Modelový vlak s hmotnosťou 3 kg sa pohybuje pozdĺž dráhy vo vzdialenosti 12 (cm) / s. Ak sa zakrivenie dráhy zmení z polomeru 4 cm na 18 cm, koľko sa musí zmeniť dostredivá sila pôsobiaca na koľajnice?
= 84000 dyne Nech hmotnosť vlaku m = 3kg = 3000 g Rýchlosť vlaku v = 12cm / s Polomer prvej dráhy r_1 = 4cm Polomer Druhej dráhy r_2 = 18cm poznáme odstredivú silu = (mv ^ 2) / r Zmenšenie sila v tomto prípade (mv ^ 2) / r_1- (mv ^ 2) / r_2 = (mv ^ 2) (1 / r_1-1 / r_2) = 310 ^ 3 * 12 ^ 2 (1 / 4-1 / 18 ) = 12000 (9-2) = 84000 #dyne
Na kruhovej dráhe s polomerom 1 m sa pohybuje modelový vlak s hmotnosťou 3 kg. Ak sa kinetická energia vlaku zmení z 21 j na 36 j, koľko sa zmení dostredivá sila pôsobiaca na koľajnice?
Aby to bolo jednoduché, zistite vzťah kinetickej energie a dostredivej sily s vecami, ktoré poznáme: Vieme: "K.E." = 1 / 2momega ^ 2r ^ 2 a "dostredivá sila" = momega ^ 2r Preto "K.E" = 1 / 2xx "dostredivá sila" xxr Poznámka, r zostáva v priebehu procesu konštantná. Preto delta "dostredivá sila" = (2Delta "K.E.") / R = (2 (36-21) J) / (1m) = 30N