odpoveď:
vysvetlenie:
Po prvé, dostať rovnicu do formulára
Gradient kolmej čiary je záporná reciprocita pôvodnej čiary. Gradient pôvodného riadku je
Dajte to do rovnice
Nájsť
Rovnica priamky je
Teraz pre grafovanie.
Viete, že linka prechádza bodom
Viete, že zachytenie y je
Gradient čiary je
Teraz máte 3 body, spojte ich a predĺžte čiaru.
Aká je rovnica priamky, ktorá prechádza (0, -1) a je kolmá na čiaru, ktorá prechádza nasledujúcimi bodmi: (8, -3), (1,0)?
7x-3y + 1 = 0 Sklon priamky spájajúcej dva body (x_1, y_1) a (x_2, y_2) je daný (y_2-y_1) / (x_2-x_1) alebo (y_1-y_2) / (x_1-x_2) ) Keďže body sú (8, -3) a (1, 0), sklon čiary, ktorá ich spája, bude daný (0 - (- 3)) / (1-8) alebo (3) / (- 7) tj -3/7. Produkt sklonu dvoch kolmých čiar je vždy -1. Preto sklon priamky kolmej na ňu bude 7/3 a teda rovnica vo forme svahu môže byť zapísaná ako y = 7 / 3x + c Keď toto prechádza bodom (0, -1), pričom tieto hodnoty zadávame vyššie v rovnici, dostaneme -1 = 7/3 * 0 + c alebo c = 1 Preto požadovaná rovnica bude y =
Aká je rovnica priamky, ktorá prechádza (0, -1) a je kolmá na čiaru, ktorá prechádza nasledujúcimi bodmi: (-5,11), (10,6)?
Y = 3x-1 "rovnica priamky je daná vzťahom" y = mx + c "kde m = gradient &" c = "priesečník y" "chceme, aby gradient priamky kolmej na čiaru" "prechádzanie danými bodmi" (-5,11), (10,6) budeme potrebovať "" m_1m_2 = -1 pre riadok daný m_1 = (Deltay) / (Deltax) = (y_2-y_1) / (x_2 -x_1): .m_1 = (11-6) / (- 5-10) = 5 / -15 = -5 / 15 = -1 / 3 "" m_1m_2 = -1 => - 1 / 3xxm_2 = -1: .m_2 = 3, takže požadovaný eqn. sa stane y = 3x + c prechádza cez "" (0, -1) -1 = 0 + c => c = -1: .y = 3x-1
Aká je rovnica priamky, ktorá prechádza (-1,7) a je kolmá na čiaru, ktorá prechádza nasledujúcimi bodmi: (1,3), (- 2,6)?
Y = x + 8 Rovnica prechádzajúcej čiary (-1,7) je y-7 = m * (x + 1), kde m je sklon priamky. Sklon druhej kolmej priamky, m1 = (6-3) / (- 2-1) = -1 Podmienka kolmosti je m * m1 = -1, takže sklon m = 1 Takže rovnica priamky je y- 7 = 1 * (x + 1) alebo y = x + 8 (odpoveď)