Vždy som si myslel, že poskytujú súbor štandardných, známych výsledkov.
Pri učení alebo vyučovaní akejkoľvek aplikácie (fyzika, inžinierstvo, geometria, počet, čokoľvek) môžeme predpokladať, že študenti, ktorí poznajú trigonometriu, môžu pochopiť príklad, ktorý používa uhly
Vo všeobecnosti existujú 2 typy špeciálnych pravouhlých trojuholníkov.
Typ 1. Pravý trojuholník, ktorý je polovicou rovnostranného trojuholníka. Jeho uhlové rozmery sú: 30, 60 a 90 °.
Typ 2. Pravouhlý trojuholník, ktorý má svoje bočné rozmery v pomere 3: 4: 5.
Použitie špeciálnych pravouhlých trojuholníkov.
V dávnej dobe, ľudia používali špeciálny pravouhlý trojuholník, s bočným pomerom 3: 4: 5, aby zistili pravý uhol na poli. Môžu tiež nájsť opatrenia troch strán pravouhlého trojuholníka, poznajúc pomer a jednu z troch strán.
Trojuholník A má plochu 12 a dve strany s dĺžkami 3 a 8. Trojuholník B je podobný trojuholníku A a má stranu dĺžky 9. Aké sú maximálne a minimálne možné plochy trojuholníka B?
Maximálna možná plocha trojuholníka B = 108 Minimálna možná plocha trojuholníka B = 15,1875 Delta s A a B sú podobné. Ak chcete získať maximálnu plochu Delta B, strana 9 Delta B by mala zodpovedať strane 3 Delta A. Strany sú v pomere 9: 3 Preto budú oblasti v pomere 9 ^ 2: 3 ^ 2 = 81: 9 Maximálna plocha trojuholníka B = (12 * 81) / 9 = 108 Podobne ako minimálna plocha, strana 8 Delta A bude zodpovedať strane 9 Delta B. Strany sú v pomere 9: 8 a plochy 81: 64 Minimálna plocha Delta B = (12 * 81) / 64 = 15,1875
Trojuholník A má plochu 12 a dve strany s dĺžkami 3 a 8. Trojuholník B je podobný trojuholníku A a má stranu dĺžky 15. Aké sú maximálne a minimálne možné plochy trojuholníka B?
Maximálna možná plocha trojuholníka B je 300 sq.unit Minimálna možná plocha trojuholníka B je 36,99 sq.unit Plocha trojuholníka A je a_A = 12 Uhol medzi stranami x = 8 a z = 3 je (x * z * sin Y) / 2 = a_A alebo (8 * 3 * sin Y) / 2 = 12:. sin Y = 1:. / _Y = sin ^ -1 (1) = 90 ^ 0 Preto, uhol medzi stranami x = 8 a z = 3 je 90 ^ 0 Strana y = sqrt (8 ^ 2 + 3 ^ 2) = sqrt 73. Pre maximálne plocha v trojuholníku B Strana z_1 = 15 zodpovedá najnižšej strane z = 3 Potom x_1 = 15/3 * 8 = 40 a y_1 = 15/3 * sqrt 73 = 5 sqrt 73 Maximálna možná plocha bude (x_1 * z_1) / 2 = (40
Preukázať nasledujúce vyhlásenie. Nech ABC je akýkoľvek pravouhlý trojuholník, pravý uhol v bode C. Nadmorská výška nakreslená od C po preponku rozdeľuje trojuholník na dva pravé trojuholníky, ktoré sú si navzájom podobné a na pôvodný trojuholník?
Pozri nižšie. Podľa otázky, DeltaABC je pravouhlý trojuholník s / _C = 90 ^ @, a CD je nadmorská výška pre hypotézu AB. Dôkaz: Predpokladajme, že / _ABC = x ^ @. Takže uholBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Teraz, CD kolmá AB. Takže uholBDC = uholADC = 90 ^ @. V DeltaCBD, uholBCD = 180 ^ @ - uholBDC - uholCBD = 180 ^ @ 90 ^ - x ^ = (90 -x) ^ @ Podobne uholACD = x ^ @. Teraz, v DeltaBCD a DeltaACD, uhol CBD = uhol ACD a uhol BDC = uholADC. Takže podľa AA kritérií podobnosti, DeltaBCD ~ DeltaACD. Podobne môžeme nájsť DeltaBCD ~ = DeltaABC. Z toho, DeltaACD ~ = Delt