odpoveď:
vysvetlenie:
#X -> (pi) / 2 # tak#cosx! = 0 #
Preto musíme tento limit vypočítať
pretože
Niektoré grafické pomoc
odpoveď:
Pre algebraické riešenie pozri nižšie.
vysvetlenie:
# = (x-pi / 2) sinx / sin (pi / 2-x) #
# = (- (pi / 2-x)) / sin (pi / 2-x) sinx #
Vezmite limit ako
Ako zistíte limit sqrt (x ^ 2-9) / (2x-6) ako x prístupy -oo?
Urobte trochu faktoringu, aby ste dostali lim_ (x -> - oo) = - 1/2. Keď sa zaoberáme hranicami v nekonečno, je vždy užitočné faktor x, alebo x ^ 2, alebo akúkoľvek moc x zjednodušiť problém. Pre tento jeden z faktorov čitateľa a x od menovateľa: lim_ (x -> - oo) (sqrt (x ^ 2-9)) / (2x-6) = (sqrt (( x ^ 2) (1-9 / (x ^ 2)))) / (x (2-6 / x)) = (sqrt (x ^ 2) sqrt (1-9 / (x ^ 2))) / (x (2-6 / x)) Tu sa začína zaujímať. Pre x> 0 je sqrt (x ^ 2) pozitívny; pre x <0 je však sqrt (x ^ 2) záporný. Z matematického hľadiska: sqrt (x ^ 2) = abs (x) pre x> 0 sqrt (x ^ 2) =
Ako zistíte limit (8x-14) / (sqrt (13x + 49x ^ 2)) ako x prístupy?
Urobte trochu faktoring a zrušenie dostať lim_ (x-> oo) (8x-14) / (sqrt (13x + 49x ^ 2)) = 8/7. V medziach nekonečna je všeobecnou stratégiou využiť skutočnosť, že lim_ (x-> oo) 1 / x = 0. Zvyčajne to znamená, že sa zrealizuje x, čo tu budeme robiť. Začni faktoringom x z čitateľa a x ^ 2 z menovateľa: (x (8-14 / x)) / (sqrt (x ^ 2 (13 / x + 49))) = (x (8 -14 / x)) / (sqrt (x ^ 2) sqrt (13 / x + 49)) Problém je teraz s sqrt (x ^ 2). Je to ekvivalent abs (x), čo je funkcia po častiach: abs (x) = {(x, "pre", x> 0), (- x, "pre", x <0):} Pretože toto je limit na kladnom nekonečno (
Aký je limit ln (x + 1) / x ako x prístupy oo?
Použite pravidlo L'Hôpital. Odpoveď je: lim_ (x-> oo) ln (x + 1) / x = 0 lim_ (x-> oo) ln (x + 1) / x Tento limit nie je možné definovať, pretože je vo forme oo / oo Preto môžete nájsť deriváciu nominátora a číselníka: lim_ (x-> oo) ln (x + 1) / x = lim_ (x-> oo) ((ln (x + 1)) ') / (( x) ') = = lim_ (x-> oo) (1 / (x + 1) * (x + 1)') / 1 = lim_ (x-> oo) 1 / (x + 1) * 1 = = lim_ (x-> oo) 1 / (x + 1) = 1 / oo = 0 Ako môžete vidieť v grafe, skutočne sa približuje k y = 0 grafu {ln (x + 1) / x [-12.66, 12.65 , -6,33, 6,33]}