odpoveď:
vysvetlenie:
Trojuholník ABC je trojuholník 3-4-5 - môžeme to vidieť pomocou Pythagorovej vety:
Takže teraz chceme nájsť obvod trojuholníka, ktorý má dvojnásobok strán ABC:
Dlhšia noha pravouhlého trojuholníka je 3 palce viac ako trojnásobok dĺžky kratšej nohy. Plocha trojuholníka je 84 štvorcových palcov. Ako zistíte obvod pravouhlého trojuholníka?
P = 56 štvorcových palcov. Pre lepšie pochopenie pozri obrázok nižšie. c = 3b + 3 (bc) / 2 = 84 (b. (3b + 3)) / 2 = 84 3b ^ 2 + 3b = 84xx2 3b ^ 2 + 3b-168 = 0 Riešenie kvadratickej rovnice: b_1 = 7 b_2 = -8 (nemožné) Takže, b = 7 c = 3xx7 + 3 = 24 a ^ 2 = 7 ^ 2 + 24 ^ 2 a ^ 2 = 625 a = sqrt (625) = 25 P = 7 + 24 + 25 = 56 štvorcových palcov
Pomer jednej strany trojuholníka ABC k zodpovedajúcej strane podobného trojuholníkového DEF je 3: 5. Ak je obvod trojuholníka DEF 48 palcov, aký je obvod trojuholníka ABC?
"Obvod" trojuholníka ABC = 28.8 Keďže trojuholník ABC ~ trojuholník DEF potom ak ("strana" ABC) / ("zodpovedajúca strana" DEF) = 3/5 farby (biela) ("XXX") rArr ("obvod "ABC) / (" obvod "DEF) = 3/5 a pretože" obvod "DEF = 48 máme farbu (biela) (" XXX ") (" obvod "ABC) / 48 = 3/5 rArrcolor ( biela) ("XXX") "obvod" ABC = (3xx48) /5=144/5=28.8
Trojuholník A má strany dĺžky 12, 9 a 8. Trojuholník B je podobný trojuholníku A a má stranu s dĺžkou 16 mm. Aké sú možné dĺžky ostatných dvoch strán trojuholníka B?
Ďalšie dve strany trojuholníka sú Prípad 1: 12, 10.6667 Prípad 2: 21.3333, 14.2222 Prípad 3: 24, 18 Trojuholníky A a B sú podobné. Prípad (1): .16 / 12 = b / 9 = c / 8 b = (16 * 9) / 12 = 12 c = (16 * 8) / 12 = 10.6667 Možné dĺžky ostatných dvoch strán trojuholníka B sú 9 , 12, 10.6667 Prípad (2): .16 / 9 = b / 12 = c / 8 b = (16 * 12) /9=21.3333 c = (16 * 8) /9=14.2222 Možné dĺžky ostatných dvoch strán trojuholník B sú 9, 21.3333, 14.2222 Prípad (3): .16 / 8 = b / 12 = c / 9 b = (16 * 12) / 8 = 24 c = (16 * 9) / 8 = 18