odpoveď:
Druhá odmocnina
vysvetlenie:
od tej doby
Môžete ju priblížiť pomocou metódy Newton Raphson.
Rád by som ho trochu preformuloval takto:
nechať
zvoliť
Prechod pomocou vzorcov:
#p_ (i + 1) = p_i ^ 2 + n q_i ^ 2 #
#q_ (i + 1) = 2 p_i q_i #
To poskytne lepšiu racionálnu aproximáciu.
takže:
# p_1 = p_0 ^ 2 + n q_0 ^ 2 = 19 ^ 2 + 89 * 2 ^ 2 = 361 + 356 = 717 #
# q_1 = 2 p_0 q_0 = 2 * 19 * 2 = 76 #
Ak by sme sa tu zastavili, dostali by sme aproximáciu:
#sqrt (89) ~ ~ 717/76 ~~ 9.434 #
Poďme ešte jeden krok:
# p_2 = p_1 ^ 2 + n q_1 ^ 2 = 717 ^ 2 + 89 * 76 ^ 2 = 514089 + 514064 = 1028153 #
# q_2 = 2 p_1 q_1 = 2 * 717 * 76 = 108984 #
Tak dostaneme aproximáciu:
#sqrt (89) ~ ~ 1028153/108984 ~ ~ 9.43398113 #
Táto metóda Newton Raphson konverguje rýchlo.
Vlastne, pomerne dobrá jednoduchá aproximácia pre
#sqrt (89) ~ ~ 500/53 ~ ~ 9.43396 #
Ak na to použijeme jeden krok iterácie, dostaneme lepšiu aproximáciu:
#sqrt (89) ~ ~ 500001/53000 ~ ~ 9.4339811321 #
poznámka pod čiarou
Všetky štvorcové korene kladných celých čísel majú opakujúce sa rozšírenia zlomkov, ktoré môžete použiť aj na vyjadrenie racionálnej aproximácie.
V prípade. T
#sqrt (89) = 9; bar (2, 3, 3, 2, 18) = 9 + 1 / (2 + 1 / (3 + 1 / (3 + 1 / (2 + 1 / (18 + 1 / (2 + 1 / (3 + …))))))) #
Aproximácia
Čo je [5 (druhá odmocnina 5) + 3 (druhá odmocnina 7)] / [4 (druhá odmocnina 7) - 3 (druhá odmocnina 5)]?
(159 + 29sqrt (35)) / 47 color (white) ("XXXXXXXX") za predpokladu, že som neurobil žiadne aritmetické chyby (5 (sqrt (5)) + 3 (sqrt (7)) / (4 (sqrt) (7) - 3 (sqrt (5)) Racionalizujte menovateľa vynásobením konjugátom: = (5 (sqrt (5)) + 3 (sqrt (7)) / (4 (sqrt (7)) - 3 (sqrt (5)) xx (4 (sqrt (7)) + 3 (sqrt (5)) / (4 (sqrt (7)) + 3 (sqrt (5)) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2), 12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Aká je druhá odmocnina 3 + druhá odmocnina 72 - druhá odmocnina z 128 + druhá odmocnina 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Vieme, že 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, takže sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Vieme, že 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, tak sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Vieme, že 128 = 2 ^ 7 , tak sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Zjednodušenie 7sqrt (3) - 2sqrt (2)
Čo je druhá odmocnina 7 + druhá odmocnina 7 ^ 2 + druhá odmocnina 7 ^ 3 + druhá odmocnina 7 ^ 4 + druhá odmocnina 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Prvá vec, ktorú môžeme urobiť, je zrušiť korene na tých, ktoré majú rovnaké právomoci. Pretože: sqrt (x ^ 2) = x a sqrt (x ^ 4) = x ^ 2 pre ľubovoľné číslo, môžeme povedať, že sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Teraz možno 7 ^ 3 prepísať ako 7 ^ 2 * 7, a že 7 ^ 2 sa môže dostať z koreňa! To isté platí pre 7 ^ 5, ale je prepísané ako 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (