odpoveď:
vysvetlenie:
Vzhľadom na to:
#f (x) = -xe ^ x #
Poznač si to:
# e ^ x> 0 "" # pre všetky skutočné hodnoty. t#X# - vynásobením
# Y # kladnou hodnotou nemení kvadrant, v ktorom# (x, y) # lži alebo akejkoľvek osi, na ktorej leží.
Takže správanie kvadrantu / os
Poznač si to
tak
graf {-xe ^ x -10, 10, -5, 5}
Ktoré kvadranty a osy prechádza cez f (x) = 5 + sqrt (x + 12)?
Doména tejto funkcie je jasne x -12. Rozsah funkcie je y 5. Preto funkcia prechádza prvým a druhým kvadrantom a len nad osou y. Graficky môžeme potvrdiť: graf {5 + sqrt (x +12) [-25,65, 25,65, -12,83, 12,83]} Dúfajme, že to pomôže!
Ktoré kvadranty a osy prechádzajú cez f (x) = abs (x) -6?
Prejde všetkými kvadrantmi. Bude pretínať zápornú os y a kladnú aj zápornú os x. Akákoľvek hodnota x má, | x | nikdy nebudú negatívne. Ale f (x) = - 6, ak x = 0 (pretínajúca os -y). Pri x = + - 6 je hodnota f (x) = 0 (priesečník + xand-x-os) priesečníky osi (-6,0), (0, -6), (+ 6,0) Graphx
Napíšte bodovú rovnicu tvaru rovnice s daným sklonom, ktorý prechádza uvedeným bodom. A.) čiara so sklonom -4 prechádzajúca (5,4). a tiež B.) čiara so sklonom 2 prechádzajúcim (-1, -2). prosím pomôžte, toto mätúce?
Y-4 = -4 (x-5) "a" y + 2 = 2 (x + 1)> "rovnica priamky v" farbe (modrá) "tvar bodu-sklon" je. • farba (biela) (x) y-y_1 = m (x-x_1) "kde m je sklon a" (x_1, y_1) "bod na riadku" (A) "daný" m = -4 "a "(x_1, y_1) = (5,4)" nahradenie týchto hodnôt do rovnice dáva "y-4 = -4 (x-5) larrcolor (modrá)" v tvare bodu-svahu "(B)" daný "m = 2 "a" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (modrá) " vo forme bodového svahu "