odpoveď:
Štandardná forma rovnice paraboly je
vysvetlenie:
Directrix je tu vodorovná čiara
Vzhľadom k tomu, že táto čiara je kolmá na os symetrie, ide o pravidelnú parabolu, kde
Teraz je vzdialenosť bodu na parabole od zamerania na
Jeho vzdialenosť od zaostrenia je
Z toho dôvodu,
alebo
alebo
alebo
alebo
Čo je štandardná forma rovnice paraboly so zameraním na (11, -10) a directrix y = 5?
(X-11) ^ 2 = -30 (y + 5/2). Viď Socratov graf pre parabolu, so zameraním a directrixom. Použitie vzdialenosti (x, y,) od zaostrenia (11, -10) = vzdialenosť od directrix y = 5, sqrt ((x-11) ^ 2 + (y + 10) ^ 2) = | y-5 |. Squaring a preskupenie, (x-11) ^ 2 = -30 (y + 5/2) graf {((x-11) ^ 2 + 30 (y + 5/2)) (y-5) 11) ^ 2 + (y + 10) ^ 2 .2) (x-11) = 0 [0, 22, -11, 5,1]}
Čo je štandardná forma rovnice paraboly so zameraním na (-13,7) a directrix y = 6?
(x + 13) ^ 2 = 2 (y-13/2) Parabola je krivka (lokus bodu) tak, že jej vzdialenosť od pevného bodu (zaostrenia) je rovná jeho vzdialenosti od pevnej čiary (directrix ). Ak teda (x, y) je akýkoľvek bod na parabole, potom jeho vzdialenosť od ohniska (-13,7) by bola sqrt ((x + 13) ^ 2 + (y-7) ^ 2) Jeho vzdialenosť od directrix by bol (y-6) Tak sqrt ((x + 13) ^ 2 + (y-7) ^ 2) = y-6 Obe strany na oboch stranách (x + 13) ^ 2 + y ^ 2-14y + 49 = y ^ 2 -12y +36 (x + 13) ^ 2 = 2y-13 (x + 13) ^ 2 = 2 (y-13/2) je požadovaný štandardný formulár
Čo je štandardná forma rovnice paraboly so zameraním na (16, -3) a directrix y = 31?
Rovnica paraboly je y = -1/68 (x-16) ^ 2 + 14 Vrchol paraboly je v ekvidištancii od fokusu (16, -3) a directrix (y = 31). Takže vrchol bude na (16,14) Parabola sa otvára smerom dole a rovnica je y = -a (x-16) ^ 2 + 14 Vzdialenosť medzi vrcholom a priamkou je 17:. a = 1 / (4 * 17) = 1/68 Preto rovnica paraboly je y = -1/68 (x-16) ^ 2 + 14 graf {-1/68 (x-16) ^ 2 + 14 [ -160, 160, -80, 80]} [Ans]