odpoveď:
To platí pre všetky tri pozitívne po sebe idúce celé čísla.
vysvetlenie:
Nech sú tri po sebe idúce celé čísla
Ako súčet najmenších, t.j.
tj.
tj.
Preto tvrdenie, že súčet najmenších a dvojnásobných je väčší ako tretí, platí pre všetky tri pozitívne po sebe idúce celé čísla.
Súčet troch čísiel je 4. Ak je prvá dvojnásobná a tretia je trojnásobná, potom súčet je o dva menej ako druhý. Štyri viac ako prvé pridané k tretiemu sú o dva viac ako druhé. Nájdite čísla?
1. = 2, 2. = 3, 3. = -1 Vytvorte tri rovnice: Nech 1. = x, 2. = y a 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "" => 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Odstránenie premennej y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Vyriešte x odstránením premennej z vynásobením EQ. 1 + EQ. 3 o -2 a pridaním do EQ. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 "" 3x + 4z = 2 ul (-4x - 4z = -4) -x "" = -2 "" = > x = 2 Vyriešte z zadaním x do EQ. 2 & EQ. 3: EQ. 2 s x: "" 4 - y + 3z = -
Aké sú tri po sebe idúce celé čísla tak, že súčet prvých a dvojnásobných je o 20 viac ako tretí?
10, 12, 14 Nech x je najmenší z 3 celých čísel => druhé celé číslo je x + 2 => najväčšie celé číslo je x + 4 x + 2 (x + 2) = x + 4 + 20 => x + 2x + 4 = x + 24 => 3x + 4 = x + 24 => 2x = 20 => x = 10 => x + 2 = 12 => x + 4 = 14 #
"Lena má 2 po sebe idúce celé čísla."Všimne si, že ich súčet sa rovná rozdielu medzi ich štvorcami. Lena vyberá ďalšie 2 po sebe idúce celé čísla a všimne si to isté. Preukázať algebraicky, že to platí pre všetky 2 po sebe idúcich celých čísel?
Láskavo sa obráťte na Vysvetlenie. Pripomeňme, že po sebe idúce celé čísla sa líšia o 1. Preto, ak m je jedno celé číslo, potom nasledujúce celé číslo musí byť n + 1. Súčet týchto dvoch celých čísel je n + (n + 1) = 2n + 1. Rozdiel medzi ich štvorcami je (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, podľa potreby! Cítiť radosť z matematiky!