odpoveď:
vysvetlenie:
#550 = 2*5^2*11 = 5^2*22#
Nájdeme teda:
#sqrt (550) = sqrt (5 ^ 2 * 22) = sqrt (5 ^ 2) sqrt (22) = 5sqrt (22) #
poznámka pod čiarou
Mierne sa mi nepáči výraz "druhá odmocnina …", pretože každé nenulové číslo má dva štvorcové korene, naproti sebe.
Symbol
Druhá hlavná odmocnina sa potom označuje ako
Čo je [5 (druhá odmocnina 5) + 3 (druhá odmocnina 7)] / [4 (druhá odmocnina 7) - 3 (druhá odmocnina 5)]?
(159 + 29sqrt (35)) / 47 color (white) ("XXXXXXXX") za predpokladu, že som neurobil žiadne aritmetické chyby (5 (sqrt (5)) + 3 (sqrt (7)) / (4 (sqrt) (7) - 3 (sqrt (5)) Racionalizujte menovateľa vynásobením konjugátom: = (5 (sqrt (5)) + 3 (sqrt (7)) / (4 (sqrt (7)) - 3 (sqrt (5)) xx (4 (sqrt (7)) + 3 (sqrt (5)) / (4 (sqrt (7)) + 3 (sqrt (5)) = (20sqrt (35) + 15 ((sqrt (5)) ^ 2), 12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16 (7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Aká je druhá odmocnina 3 + druhá odmocnina 72 - druhá odmocnina z 128 + druhá odmocnina 108?
7sqrt (3) - 2sqrt (2) sqrt (3) + sqrt (72) - sqrt (128) + sqrt (108) Vieme, že 108 = 9 * 12 = 3 ^ 3 * 2 ^ 2, takže sqrt (108) = sqrt (3 ^ 3 * 2 ^ 2) = 6sqrt (3) sqrt (3) + sqrt (72) - sqrt (128) + 6sqrt (3) Vieme, že 72 = 9 * 8 = 3 ^ 2 * 2 ^ 3, tak sqrt (72) = sqrt (3 ^ 2 * 2 ^ 3) = 6sqrt (2) sqrt (3) + 6sqrt (2) - sqrt (128) + 6sqrt (3) Vieme, že 128 = 2 ^ 7 , tak sqrt (128) = sqrt (2 ^ 6 * 2) = 8sqrt (2) sqrt (3) + 6sqrt (2) - 8sqrt (2) + 6sqrt (3) Zjednodušenie 7sqrt (3) - 2sqrt (2)
Čo je druhá odmocnina 7 + druhá odmocnina 7 ^ 2 + druhá odmocnina 7 ^ 3 + druhá odmocnina 7 ^ 4 + druhá odmocnina 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Prvá vec, ktorú môžeme urobiť, je zrušiť korene na tých, ktoré majú rovnaké právomoci. Pretože: sqrt (x ^ 2) = x a sqrt (x ^ 4) = x ^ 2 pre ľubovoľné číslo, môžeme povedať, že sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Teraz možno 7 ^ 3 prepísať ako 7 ^ 2 * 7, a že 7 ^ 2 sa môže dostať z koreňa! To isté platí pre 7 ^ 5, ale je prepísané ako 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (